Turnover of a Methane Oxidation Tricopper Cluster Catalyst: Implications for the Mechanism of the Particulate Methane Monooxygenase (pMMO)
The CuICuICuI tricopper cluster complex is the only known catalyst capable of efficient methane oxidation near room temperature similar to the particulate methane monooxygenase (pMMO). Here, we compare the turnover of the CuICuICuI tricopper catalyst with the biochemistry of the functional pMMO. Ins...
Gespeichert in:
Veröffentlicht in: | ChemCatChem 2020-06, Vol.12 (11), p.3088-3096 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3096 |
---|---|
container_issue | 11 |
container_start_page | 3088 |
container_title | ChemCatChem |
container_volume | 12 |
creator | Chen, Yu‐Hsuan Wu, Chang‐Quan Sung, Pei‐Hua Chan, Sunney I. Chen, Peter Ping‐Yu |
description | The CuICuICuI tricopper cluster complex is the only known catalyst capable of efficient methane oxidation near room temperature similar to the particulate methane monooxygenase (pMMO). Here, we compare the turnover of the CuICuICuI tricopper catalyst with the biochemistry of the functional pMMO. Insights into the turnover of the biomimetic tricopper catalyst are derived from anaerobic electrospray mass spectrometry (ESI‐MS) and high‐resolution ESI‐MS (HR‐ESI‐MS). We follow activation of the tricopper cluster with O2/H2O2 by rapid‐freeze‐quench ESI‐MS, high‐resolution cold‐spray ionization mass spectrometry (HR‐CSI‐MS) and electron paramagnetic resonance spectroscopy, capturing all the species participating in the activation and deactivation pathways of the turnover cycle. The reactivity of the activated tricopper complex toward alkane oxidation is essentially the same as the biochemistry reported earlier for pMMO from Methylococcus capsulatus (Bath).
Just how does it work? The activation of a CuICuICuI tricopper cluster methane oxidation catalyst by O2/H2O2 is examined by rapid‐freeze‐quench and cold spray ESI‐MS, and EPR. Comparison of the findings reported in the presence/absence of organic substrates has shed light on the chemistry of the hot oxene harnessed by the activated tricopper cluster complex during oxidation of CH4 and other light alkanes. |
doi_str_mv | 10.1002/cctc.202000322 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409512253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409512253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3832-75bbcd574b2ef89a6447d33450284578f2325268b630af1a4d63fc08e7b7f10a3</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EEqWwMltigSHFsePEYUMRP5ValSHMkePY1FUaB9uB5hV4ahKKysh0r67Od670AXAZolmIEL4VwosZRhghRDA-ApOQxUlAWJoeH3aGTsGZcxuE4pQkdAK-8s425kNaaBTkcCn9mjcSrna64l6bBuZWC9O2A5DVnfPj5J7XvfN3cL5tay1-OAeVsdCv5aAQg0K77WgcDy_cei26mnt58C9NY8yuf5MNdxJet8vl6uYcnCheO3nxO6fg9fEhz56Dxeppnt0vAkEYwUFCy1JUNIlKLBVLeRxFSUVIRBFmEU2YwgRTHLMyJoirkEdVTJRATCZlokLEyRRc7b2tNe-ddL7YmKGE4WWBI5TSEGNKBmq2p4Q1zlmpitbqLbd9EaJi7LsY-y4OfQ-BdB_41LXs_6GLLMuzv-w3tymFIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409512253</pqid></control><display><type>article</type><title>Turnover of a Methane Oxidation Tricopper Cluster Catalyst: Implications for the Mechanism of the Particulate Methane Monooxygenase (pMMO)</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Yu‐Hsuan ; Wu, Chang‐Quan ; Sung, Pei‐Hua ; Chan, Sunney I. ; Chen, Peter Ping‐Yu</creator><creatorcontrib>Chen, Yu‐Hsuan ; Wu, Chang‐Quan ; Sung, Pei‐Hua ; Chan, Sunney I. ; Chen, Peter Ping‐Yu</creatorcontrib><description>The CuICuICuI tricopper cluster complex is the only known catalyst capable of efficient methane oxidation near room temperature similar to the particulate methane monooxygenase (pMMO). Here, we compare the turnover of the CuICuICuI tricopper catalyst with the biochemistry of the functional pMMO. Insights into the turnover of the biomimetic tricopper catalyst are derived from anaerobic electrospray mass spectrometry (ESI‐MS) and high‐resolution ESI‐MS (HR‐ESI‐MS). We follow activation of the tricopper cluster with O2/H2O2 by rapid‐freeze‐quench ESI‐MS, high‐resolution cold‐spray ionization mass spectrometry (HR‐CSI‐MS) and electron paramagnetic resonance spectroscopy, capturing all the species participating in the activation and deactivation pathways of the turnover cycle. The reactivity of the activated tricopper complex toward alkane oxidation is essentially the same as the biochemistry reported earlier for pMMO from Methylococcus capsulatus (Bath).
Just how does it work? The activation of a CuICuICuI tricopper cluster methane oxidation catalyst by O2/H2O2 is examined by rapid‐freeze‐quench and cold spray ESI‐MS, and EPR. Comparison of the findings reported in the presence/absence of organic substrates has shed light on the chemistry of the hot oxene harnessed by the activated tricopper cluster complex during oxidation of CH4 and other light alkanes.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.202000322</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Activation ; Alkanes ; anaerobic electrospray ionization mass spectrometry ; Biochemistry ; Biomimetics ; Catalysts ; Clusters ; Deactivation ; Electron paramagnetic resonance ; Hydrogen peroxide ; Ions ; Mass spectrometry ; Methane ; Oxidation ; oxygen reactions ; rapid-freeze-quench mixing experiments ; reaction intermediates ; Room temperature ; Scientific imaging ; Spectroscopy ; tricopper cluster complex</subject><ispartof>ChemCatChem, 2020-06, Vol.12 (11), p.3088-3096</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3832-75bbcd574b2ef89a6447d33450284578f2325268b630af1a4d63fc08e7b7f10a3</citedby><cites>FETCH-LOGICAL-c3832-75bbcd574b2ef89a6447d33450284578f2325268b630af1a4d63fc08e7b7f10a3</cites><orcidid>0000-0002-3472-4221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.202000322$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.202000322$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Chen, Yu‐Hsuan</creatorcontrib><creatorcontrib>Wu, Chang‐Quan</creatorcontrib><creatorcontrib>Sung, Pei‐Hua</creatorcontrib><creatorcontrib>Chan, Sunney I.</creatorcontrib><creatorcontrib>Chen, Peter Ping‐Yu</creatorcontrib><title>Turnover of a Methane Oxidation Tricopper Cluster Catalyst: Implications for the Mechanism of the Particulate Methane Monooxygenase (pMMO)</title><title>ChemCatChem</title><description>The CuICuICuI tricopper cluster complex is the only known catalyst capable of efficient methane oxidation near room temperature similar to the particulate methane monooxygenase (pMMO). Here, we compare the turnover of the CuICuICuI tricopper catalyst with the biochemistry of the functional pMMO. Insights into the turnover of the biomimetic tricopper catalyst are derived from anaerobic electrospray mass spectrometry (ESI‐MS) and high‐resolution ESI‐MS (HR‐ESI‐MS). We follow activation of the tricopper cluster with O2/H2O2 by rapid‐freeze‐quench ESI‐MS, high‐resolution cold‐spray ionization mass spectrometry (HR‐CSI‐MS) and electron paramagnetic resonance spectroscopy, capturing all the species participating in the activation and deactivation pathways of the turnover cycle. The reactivity of the activated tricopper complex toward alkane oxidation is essentially the same as the biochemistry reported earlier for pMMO from Methylococcus capsulatus (Bath).
Just how does it work? The activation of a CuICuICuI tricopper cluster methane oxidation catalyst by O2/H2O2 is examined by rapid‐freeze‐quench and cold spray ESI‐MS, and EPR. Comparison of the findings reported in the presence/absence of organic substrates has shed light on the chemistry of the hot oxene harnessed by the activated tricopper cluster complex during oxidation of CH4 and other light alkanes.</description><subject>Activation</subject><subject>Alkanes</subject><subject>anaerobic electrospray ionization mass spectrometry</subject><subject>Biochemistry</subject><subject>Biomimetics</subject><subject>Catalysts</subject><subject>Clusters</subject><subject>Deactivation</subject><subject>Electron paramagnetic resonance</subject><subject>Hydrogen peroxide</subject><subject>Ions</subject><subject>Mass spectrometry</subject><subject>Methane</subject><subject>Oxidation</subject><subject>oxygen reactions</subject><subject>rapid-freeze-quench mixing experiments</subject><subject>reaction intermediates</subject><subject>Room temperature</subject><subject>Scientific imaging</subject><subject>Spectroscopy</subject><subject>tricopper cluster complex</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EEqWwMltigSHFsePEYUMRP5ValSHMkePY1FUaB9uB5hV4ahKKysh0r67Od670AXAZolmIEL4VwosZRhghRDA-ApOQxUlAWJoeH3aGTsGZcxuE4pQkdAK-8s425kNaaBTkcCn9mjcSrna64l6bBuZWC9O2A5DVnfPj5J7XvfN3cL5tay1-OAeVsdCv5aAQg0K77WgcDy_cei26mnt58C9NY8yuf5MNdxJet8vl6uYcnCheO3nxO6fg9fEhz56Dxeppnt0vAkEYwUFCy1JUNIlKLBVLeRxFSUVIRBFmEU2YwgRTHLMyJoirkEdVTJRATCZlokLEyRRc7b2tNe-ddL7YmKGE4WWBI5TSEGNKBmq2p4Q1zlmpitbqLbd9EaJi7LsY-y4OfQ-BdB_41LXs_6GLLMuzv-w3tymFIg</recordid><startdate>20200605</startdate><enddate>20200605</enddate><creator>Chen, Yu‐Hsuan</creator><creator>Wu, Chang‐Quan</creator><creator>Sung, Pei‐Hua</creator><creator>Chan, Sunney I.</creator><creator>Chen, Peter Ping‐Yu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3472-4221</orcidid></search><sort><creationdate>20200605</creationdate><title>Turnover of a Methane Oxidation Tricopper Cluster Catalyst: Implications for the Mechanism of the Particulate Methane Monooxygenase (pMMO)</title><author>Chen, Yu‐Hsuan ; Wu, Chang‐Quan ; Sung, Pei‐Hua ; Chan, Sunney I. ; Chen, Peter Ping‐Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3832-75bbcd574b2ef89a6447d33450284578f2325268b630af1a4d63fc08e7b7f10a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation</topic><topic>Alkanes</topic><topic>anaerobic electrospray ionization mass spectrometry</topic><topic>Biochemistry</topic><topic>Biomimetics</topic><topic>Catalysts</topic><topic>Clusters</topic><topic>Deactivation</topic><topic>Electron paramagnetic resonance</topic><topic>Hydrogen peroxide</topic><topic>Ions</topic><topic>Mass spectrometry</topic><topic>Methane</topic><topic>Oxidation</topic><topic>oxygen reactions</topic><topic>rapid-freeze-quench mixing experiments</topic><topic>reaction intermediates</topic><topic>Room temperature</topic><topic>Scientific imaging</topic><topic>Spectroscopy</topic><topic>tricopper cluster complex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yu‐Hsuan</creatorcontrib><creatorcontrib>Wu, Chang‐Quan</creatorcontrib><creatorcontrib>Sung, Pei‐Hua</creatorcontrib><creatorcontrib>Chan, Sunney I.</creatorcontrib><creatorcontrib>Chen, Peter Ping‐Yu</creatorcontrib><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yu‐Hsuan</au><au>Wu, Chang‐Quan</au><au>Sung, Pei‐Hua</au><au>Chan, Sunney I.</au><au>Chen, Peter Ping‐Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turnover of a Methane Oxidation Tricopper Cluster Catalyst: Implications for the Mechanism of the Particulate Methane Monooxygenase (pMMO)</atitle><jtitle>ChemCatChem</jtitle><date>2020-06-05</date><risdate>2020</risdate><volume>12</volume><issue>11</issue><spage>3088</spage><epage>3096</epage><pages>3088-3096</pages><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>The CuICuICuI tricopper cluster complex is the only known catalyst capable of efficient methane oxidation near room temperature similar to the particulate methane monooxygenase (pMMO). Here, we compare the turnover of the CuICuICuI tricopper catalyst with the biochemistry of the functional pMMO. Insights into the turnover of the biomimetic tricopper catalyst are derived from anaerobic electrospray mass spectrometry (ESI‐MS) and high‐resolution ESI‐MS (HR‐ESI‐MS). We follow activation of the tricopper cluster with O2/H2O2 by rapid‐freeze‐quench ESI‐MS, high‐resolution cold‐spray ionization mass spectrometry (HR‐CSI‐MS) and electron paramagnetic resonance spectroscopy, capturing all the species participating in the activation and deactivation pathways of the turnover cycle. The reactivity of the activated tricopper complex toward alkane oxidation is essentially the same as the biochemistry reported earlier for pMMO from Methylococcus capsulatus (Bath).
Just how does it work? The activation of a CuICuICuI tricopper cluster methane oxidation catalyst by O2/H2O2 is examined by rapid‐freeze‐quench and cold spray ESI‐MS, and EPR. Comparison of the findings reported in the presence/absence of organic substrates has shed light on the chemistry of the hot oxene harnessed by the activated tricopper cluster complex during oxidation of CH4 and other light alkanes.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.202000322</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3472-4221</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1867-3880 |
ispartof | ChemCatChem, 2020-06, Vol.12 (11), p.3088-3096 |
issn | 1867-3880 1867-3899 |
language | eng |
recordid | cdi_proquest_journals_2409512253 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Activation Alkanes anaerobic electrospray ionization mass spectrometry Biochemistry Biomimetics Catalysts Clusters Deactivation Electron paramagnetic resonance Hydrogen peroxide Ions Mass spectrometry Methane Oxidation oxygen reactions rapid-freeze-quench mixing experiments reaction intermediates Room temperature Scientific imaging Spectroscopy tricopper cluster complex |
title | Turnover of a Methane Oxidation Tricopper Cluster Catalyst: Implications for the Mechanism of the Particulate Methane Monooxygenase (pMMO) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A22%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turnover%20of%20a%20Methane%20Oxidation%20Tricopper%20Cluster%20Catalyst:%20Implications%20for%20the%20Mechanism%20of%20the%20Particulate%20Methane%20Monooxygenase%20(pMMO)&rft.jtitle=ChemCatChem&rft.au=Chen,%20Yu%E2%80%90Hsuan&rft.date=2020-06-05&rft.volume=12&rft.issue=11&rft.spage=3088&rft.epage=3096&rft.pages=3088-3096&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.202000322&rft_dat=%3Cproquest_cross%3E2409512253%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409512253&rft_id=info:pmid/&rfr_iscdi=true |