Turnover of a Methane Oxidation Tricopper Cluster Catalyst: Implications for the Mechanism of the Particulate Methane Monooxygenase (pMMO)

The CuICuICuI tricopper cluster complex is the only known catalyst capable of efficient methane oxidation near room temperature similar to the particulate methane monooxygenase (pMMO). Here, we compare the turnover of the CuICuICuI tricopper catalyst with the biochemistry of the functional pMMO. Ins...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2020-06, Vol.12 (11), p.3088-3096
Hauptverfasser: Chen, Yu‐Hsuan, Wu, Chang‐Quan, Sung, Pei‐Hua, Chan, Sunney I., Chen, Peter Ping‐Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3096
container_issue 11
container_start_page 3088
container_title ChemCatChem
container_volume 12
creator Chen, Yu‐Hsuan
Wu, Chang‐Quan
Sung, Pei‐Hua
Chan, Sunney I.
Chen, Peter Ping‐Yu
description The CuICuICuI tricopper cluster complex is the only known catalyst capable of efficient methane oxidation near room temperature similar to the particulate methane monooxygenase (pMMO). Here, we compare the turnover of the CuICuICuI tricopper catalyst with the biochemistry of the functional pMMO. Insights into the turnover of the biomimetic tricopper catalyst are derived from anaerobic electrospray mass spectrometry (ESI‐MS) and high‐resolution ESI‐MS (HR‐ESI‐MS). We follow activation of the tricopper cluster with O2/H2O2 by rapid‐freeze‐quench ESI‐MS, high‐resolution cold‐spray ionization mass spectrometry (HR‐CSI‐MS) and electron paramagnetic resonance spectroscopy, capturing all the species participating in the activation and deactivation pathways of the turnover cycle. The reactivity of the activated tricopper complex toward alkane oxidation is essentially the same as the biochemistry reported earlier for pMMO from Methylococcus capsulatus (Bath). Just how does it work? The activation of a CuICuICuI tricopper cluster methane oxidation catalyst by O2/H2O2 is examined by rapid‐freeze‐quench and cold spray ESI‐MS, and EPR. Comparison of the findings reported in the presence/absence of organic substrates has shed light on the chemistry of the hot oxene harnessed by the activated tricopper cluster complex during oxidation of CH4 and other light alkanes.
doi_str_mv 10.1002/cctc.202000322
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409512253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409512253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3832-75bbcd574b2ef89a6447d33450284578f2325268b630af1a4d63fc08e7b7f10a3</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EEqWwMltigSHFsePEYUMRP5ValSHMkePY1FUaB9uB5hV4ahKKysh0r67Od670AXAZolmIEL4VwosZRhghRDA-ApOQxUlAWJoeH3aGTsGZcxuE4pQkdAK-8s425kNaaBTkcCn9mjcSrna64l6bBuZWC9O2A5DVnfPj5J7XvfN3cL5tay1-OAeVsdCv5aAQg0K77WgcDy_cei26mnt58C9NY8yuf5MNdxJet8vl6uYcnCheO3nxO6fg9fEhz56Dxeppnt0vAkEYwUFCy1JUNIlKLBVLeRxFSUVIRBFmEU2YwgRTHLMyJoirkEdVTJRATCZlokLEyRRc7b2tNe-ddL7YmKGE4WWBI5TSEGNKBmq2p4Q1zlmpitbqLbd9EaJi7LsY-y4OfQ-BdB_41LXs_6GLLMuzv-w3tymFIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409512253</pqid></control><display><type>article</type><title>Turnover of a Methane Oxidation Tricopper Cluster Catalyst: Implications for the Mechanism of the Particulate Methane Monooxygenase (pMMO)</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Yu‐Hsuan ; Wu, Chang‐Quan ; Sung, Pei‐Hua ; Chan, Sunney I. ; Chen, Peter Ping‐Yu</creator><creatorcontrib>Chen, Yu‐Hsuan ; Wu, Chang‐Quan ; Sung, Pei‐Hua ; Chan, Sunney I. ; Chen, Peter Ping‐Yu</creatorcontrib><description>The CuICuICuI tricopper cluster complex is the only known catalyst capable of efficient methane oxidation near room temperature similar to the particulate methane monooxygenase (pMMO). Here, we compare the turnover of the CuICuICuI tricopper catalyst with the biochemistry of the functional pMMO. Insights into the turnover of the biomimetic tricopper catalyst are derived from anaerobic electrospray mass spectrometry (ESI‐MS) and high‐resolution ESI‐MS (HR‐ESI‐MS). We follow activation of the tricopper cluster with O2/H2O2 by rapid‐freeze‐quench ESI‐MS, high‐resolution cold‐spray ionization mass spectrometry (HR‐CSI‐MS) and electron paramagnetic resonance spectroscopy, capturing all the species participating in the activation and deactivation pathways of the turnover cycle. The reactivity of the activated tricopper complex toward alkane oxidation is essentially the same as the biochemistry reported earlier for pMMO from Methylococcus capsulatus (Bath). Just how does it work? The activation of a CuICuICuI tricopper cluster methane oxidation catalyst by O2/H2O2 is examined by rapid‐freeze‐quench and cold spray ESI‐MS, and EPR. Comparison of the findings reported in the presence/absence of organic substrates has shed light on the chemistry of the hot oxene harnessed by the activated tricopper cluster complex during oxidation of CH4 and other light alkanes.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.202000322</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Activation ; Alkanes ; anaerobic electrospray ionization mass spectrometry ; Biochemistry ; Biomimetics ; Catalysts ; Clusters ; Deactivation ; Electron paramagnetic resonance ; Hydrogen peroxide ; Ions ; Mass spectrometry ; Methane ; Oxidation ; oxygen reactions ; rapid-freeze-quench mixing experiments ; reaction intermediates ; Room temperature ; Scientific imaging ; Spectroscopy ; tricopper cluster complex</subject><ispartof>ChemCatChem, 2020-06, Vol.12 (11), p.3088-3096</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3832-75bbcd574b2ef89a6447d33450284578f2325268b630af1a4d63fc08e7b7f10a3</citedby><cites>FETCH-LOGICAL-c3832-75bbcd574b2ef89a6447d33450284578f2325268b630af1a4d63fc08e7b7f10a3</cites><orcidid>0000-0002-3472-4221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.202000322$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.202000322$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Chen, Yu‐Hsuan</creatorcontrib><creatorcontrib>Wu, Chang‐Quan</creatorcontrib><creatorcontrib>Sung, Pei‐Hua</creatorcontrib><creatorcontrib>Chan, Sunney I.</creatorcontrib><creatorcontrib>Chen, Peter Ping‐Yu</creatorcontrib><title>Turnover of a Methane Oxidation Tricopper Cluster Catalyst: Implications for the Mechanism of the Particulate Methane Monooxygenase (pMMO)</title><title>ChemCatChem</title><description>The CuICuICuI tricopper cluster complex is the only known catalyst capable of efficient methane oxidation near room temperature similar to the particulate methane monooxygenase (pMMO). Here, we compare the turnover of the CuICuICuI tricopper catalyst with the biochemistry of the functional pMMO. Insights into the turnover of the biomimetic tricopper catalyst are derived from anaerobic electrospray mass spectrometry (ESI‐MS) and high‐resolution ESI‐MS (HR‐ESI‐MS). We follow activation of the tricopper cluster with O2/H2O2 by rapid‐freeze‐quench ESI‐MS, high‐resolution cold‐spray ionization mass spectrometry (HR‐CSI‐MS) and electron paramagnetic resonance spectroscopy, capturing all the species participating in the activation and deactivation pathways of the turnover cycle. The reactivity of the activated tricopper complex toward alkane oxidation is essentially the same as the biochemistry reported earlier for pMMO from Methylococcus capsulatus (Bath). Just how does it work? The activation of a CuICuICuI tricopper cluster methane oxidation catalyst by O2/H2O2 is examined by rapid‐freeze‐quench and cold spray ESI‐MS, and EPR. Comparison of the findings reported in the presence/absence of organic substrates has shed light on the chemistry of the hot oxene harnessed by the activated tricopper cluster complex during oxidation of CH4 and other light alkanes.</description><subject>Activation</subject><subject>Alkanes</subject><subject>anaerobic electrospray ionization mass spectrometry</subject><subject>Biochemistry</subject><subject>Biomimetics</subject><subject>Catalysts</subject><subject>Clusters</subject><subject>Deactivation</subject><subject>Electron paramagnetic resonance</subject><subject>Hydrogen peroxide</subject><subject>Ions</subject><subject>Mass spectrometry</subject><subject>Methane</subject><subject>Oxidation</subject><subject>oxygen reactions</subject><subject>rapid-freeze-quench mixing experiments</subject><subject>reaction intermediates</subject><subject>Room temperature</subject><subject>Scientific imaging</subject><subject>Spectroscopy</subject><subject>tricopper cluster complex</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EEqWwMltigSHFsePEYUMRP5ValSHMkePY1FUaB9uB5hV4ahKKysh0r67Od670AXAZolmIEL4VwosZRhghRDA-ApOQxUlAWJoeH3aGTsGZcxuE4pQkdAK-8s425kNaaBTkcCn9mjcSrna64l6bBuZWC9O2A5DVnfPj5J7XvfN3cL5tay1-OAeVsdCv5aAQg0K77WgcDy_cei26mnt58C9NY8yuf5MNdxJet8vl6uYcnCheO3nxO6fg9fEhz56Dxeppnt0vAkEYwUFCy1JUNIlKLBVLeRxFSUVIRBFmEU2YwgRTHLMyJoirkEdVTJRATCZlokLEyRRc7b2tNe-ddL7YmKGE4WWBI5TSEGNKBmq2p4Q1zlmpitbqLbd9EaJi7LsY-y4OfQ-BdB_41LXs_6GLLMuzv-w3tymFIg</recordid><startdate>20200605</startdate><enddate>20200605</enddate><creator>Chen, Yu‐Hsuan</creator><creator>Wu, Chang‐Quan</creator><creator>Sung, Pei‐Hua</creator><creator>Chan, Sunney I.</creator><creator>Chen, Peter Ping‐Yu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3472-4221</orcidid></search><sort><creationdate>20200605</creationdate><title>Turnover of a Methane Oxidation Tricopper Cluster Catalyst: Implications for the Mechanism of the Particulate Methane Monooxygenase (pMMO)</title><author>Chen, Yu‐Hsuan ; Wu, Chang‐Quan ; Sung, Pei‐Hua ; Chan, Sunney I. ; Chen, Peter Ping‐Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3832-75bbcd574b2ef89a6447d33450284578f2325268b630af1a4d63fc08e7b7f10a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation</topic><topic>Alkanes</topic><topic>anaerobic electrospray ionization mass spectrometry</topic><topic>Biochemistry</topic><topic>Biomimetics</topic><topic>Catalysts</topic><topic>Clusters</topic><topic>Deactivation</topic><topic>Electron paramagnetic resonance</topic><topic>Hydrogen peroxide</topic><topic>Ions</topic><topic>Mass spectrometry</topic><topic>Methane</topic><topic>Oxidation</topic><topic>oxygen reactions</topic><topic>rapid-freeze-quench mixing experiments</topic><topic>reaction intermediates</topic><topic>Room temperature</topic><topic>Scientific imaging</topic><topic>Spectroscopy</topic><topic>tricopper cluster complex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yu‐Hsuan</creatorcontrib><creatorcontrib>Wu, Chang‐Quan</creatorcontrib><creatorcontrib>Sung, Pei‐Hua</creatorcontrib><creatorcontrib>Chan, Sunney I.</creatorcontrib><creatorcontrib>Chen, Peter Ping‐Yu</creatorcontrib><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yu‐Hsuan</au><au>Wu, Chang‐Quan</au><au>Sung, Pei‐Hua</au><au>Chan, Sunney I.</au><au>Chen, Peter Ping‐Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turnover of a Methane Oxidation Tricopper Cluster Catalyst: Implications for the Mechanism of the Particulate Methane Monooxygenase (pMMO)</atitle><jtitle>ChemCatChem</jtitle><date>2020-06-05</date><risdate>2020</risdate><volume>12</volume><issue>11</issue><spage>3088</spage><epage>3096</epage><pages>3088-3096</pages><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>The CuICuICuI tricopper cluster complex is the only known catalyst capable of efficient methane oxidation near room temperature similar to the particulate methane monooxygenase (pMMO). Here, we compare the turnover of the CuICuICuI tricopper catalyst with the biochemistry of the functional pMMO. Insights into the turnover of the biomimetic tricopper catalyst are derived from anaerobic electrospray mass spectrometry (ESI‐MS) and high‐resolution ESI‐MS (HR‐ESI‐MS). We follow activation of the tricopper cluster with O2/H2O2 by rapid‐freeze‐quench ESI‐MS, high‐resolution cold‐spray ionization mass spectrometry (HR‐CSI‐MS) and electron paramagnetic resonance spectroscopy, capturing all the species participating in the activation and deactivation pathways of the turnover cycle. The reactivity of the activated tricopper complex toward alkane oxidation is essentially the same as the biochemistry reported earlier for pMMO from Methylococcus capsulatus (Bath). Just how does it work? The activation of a CuICuICuI tricopper cluster methane oxidation catalyst by O2/H2O2 is examined by rapid‐freeze‐quench and cold spray ESI‐MS, and EPR. Comparison of the findings reported in the presence/absence of organic substrates has shed light on the chemistry of the hot oxene harnessed by the activated tricopper cluster complex during oxidation of CH4 and other light alkanes.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.202000322</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3472-4221</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2020-06, Vol.12 (11), p.3088-3096
issn 1867-3880
1867-3899
language eng
recordid cdi_proquest_journals_2409512253
source Wiley Online Library Journals Frontfile Complete
subjects Activation
Alkanes
anaerobic electrospray ionization mass spectrometry
Biochemistry
Biomimetics
Catalysts
Clusters
Deactivation
Electron paramagnetic resonance
Hydrogen peroxide
Ions
Mass spectrometry
Methane
Oxidation
oxygen reactions
rapid-freeze-quench mixing experiments
reaction intermediates
Room temperature
Scientific imaging
Spectroscopy
tricopper cluster complex
title Turnover of a Methane Oxidation Tricopper Cluster Catalyst: Implications for the Mechanism of the Particulate Methane Monooxygenase (pMMO)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A22%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turnover%20of%20a%20Methane%20Oxidation%20Tricopper%20Cluster%20Catalyst:%20Implications%20for%20the%20Mechanism%20of%20the%20Particulate%20Methane%20Monooxygenase%20(pMMO)&rft.jtitle=ChemCatChem&rft.au=Chen,%20Yu%E2%80%90Hsuan&rft.date=2020-06-05&rft.volume=12&rft.issue=11&rft.spage=3088&rft.epage=3096&rft.pages=3088-3096&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.202000322&rft_dat=%3Cproquest_cross%3E2409512253%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409512253&rft_id=info:pmid/&rfr_iscdi=true