A family of potentials for elliptic equations with one singular coefficient and their applications

Potentials play an important role in solving boundary value problems for elliptic equations. In the middle of the last century, a potential theory was constructed for a two‐dimensional elliptic equation with one singular coefficient. In the study of potentials, the properties of the fundamental solu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2020-07, Vol.43 (10), p.6181-6199
Hauptverfasser: Srivastava, Hari M., Hasanov, Anvar, Gulamjanovich Ergashev, Tuhtasin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6199
container_issue 10
container_start_page 6181
container_title Mathematical methods in the applied sciences
container_volume 43
creator Srivastava, Hari M.
Hasanov, Anvar
Gulamjanovich Ergashev, Tuhtasin
description Potentials play an important role in solving boundary value problems for elliptic equations. In the middle of the last century, a potential theory was constructed for a two‐dimensional elliptic equation with one singular coefficient. In the study of potentials, the properties of the fundamental solutions of the given equation are essentially and fruitfully used. At the present time, fundamental solutions of a multidimensional elliptic equation with one degeneration line are already known. In this paper, we investigate the double‐ and simple‐layer potentials for this kind of elliptic equations. Results from potential theory allow us to represent the solution of the boundary value problems in the form of an integral equation. By using some properties of the Gaussian hypergeometric function, we first prove limiting theorems and derive integral equations concerning the densities of the double‐ and simple‐layer potentials. The obtained results are then applied in order to find an explicit solution of the Holmgren problem for the multidimensional singular elliptic equation in the half of the ball.
doi_str_mv 10.1002/mma.6365
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409494843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409494843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2935-23b718135dac0b4c9e168dfe23999eb116d7b2df99031180fe33198b9b3a97c33</originalsourceid><addsrcrecordid>eNp10E9LwzAYBvAgCs4p-BECXrx05k2ytjmO4T_Y8KLnkKaJy2ibLkkZ-_Z21qun9_J7nhcehO6BLIAQ-tS2apGzfHmBZkCEyIAX-SWaEShIxinwa3QT454QUgLQGapW2KrWNSfsLe59Ml1yqonY-oBN07g-OY3NYVDJ-S7io0s77DuDo-u-h0YFrL2x1mk3BrHqapx2xgWs-r5xegrdois7Vpq7vztHXy_Pn-u3bPPx-r5ebTJNBVtmlFUFlMCWtdKk4loYyMvaGsqEEKYCyOuiorUVgjCAkljDGIiyEhVTotCMzdHD1NsHfxhMTHLvh9CNLyXlRHDBS35Wj5PSwccYjJV9cK0KJwlEnheU44LyvOBIs4keXWNO_zq53a5-_Q8oKHJf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409494843</pqid></control><display><type>article</type><title>A family of potentials for elliptic equations with one singular coefficient and their applications</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Srivastava, Hari M. ; Hasanov, Anvar ; Gulamjanovich Ergashev, Tuhtasin</creator><creatorcontrib>Srivastava, Hari M. ; Hasanov, Anvar ; Gulamjanovich Ergashev, Tuhtasin</creatorcontrib><description>Potentials play an important role in solving boundary value problems for elliptic equations. In the middle of the last century, a potential theory was constructed for a two‐dimensional elliptic equation with one singular coefficient. In the study of potentials, the properties of the fundamental solutions of the given equation are essentially and fruitfully used. At the present time, fundamental solutions of a multidimensional elliptic equation with one degeneration line are already known. In this paper, we investigate the double‐ and simple‐layer potentials for this kind of elliptic equations. Results from potential theory allow us to represent the solution of the boundary value problems in the form of an integral equation. By using some properties of the Gaussian hypergeometric function, we first prove limiting theorems and derive integral equations concerning the densities of the double‐ and simple‐layer potentials. The obtained results are then applied in order to find an explicit solution of the Holmgren problem for the multidimensional singular elliptic equation in the half of the ball.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6365</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Boundary value problems ; Degeneration ; Elliptic functions ; fundamental solutions ; gauss‐ostrogradsky formula ; Green's function ; Holmgren problem ; Hypergeometric functions ; Integral equations ; Mathematical analysis ; multidimensional elliptic equations with one singular coefficient ; Potential theory</subject><ispartof>Mathematical methods in the applied sciences, 2020-07, Vol.43 (10), p.6181-6199</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2935-23b718135dac0b4c9e168dfe23999eb116d7b2df99031180fe33198b9b3a97c33</citedby><cites>FETCH-LOGICAL-c2935-23b718135dac0b4c9e168dfe23999eb116d7b2df99031180fe33198b9b3a97c33</cites><orcidid>0000-0002-9277-8092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6365$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6365$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Srivastava, Hari M.</creatorcontrib><creatorcontrib>Hasanov, Anvar</creatorcontrib><creatorcontrib>Gulamjanovich Ergashev, Tuhtasin</creatorcontrib><title>A family of potentials for elliptic equations with one singular coefficient and their applications</title><title>Mathematical methods in the applied sciences</title><description>Potentials play an important role in solving boundary value problems for elliptic equations. In the middle of the last century, a potential theory was constructed for a two‐dimensional elliptic equation with one singular coefficient. In the study of potentials, the properties of the fundamental solutions of the given equation are essentially and fruitfully used. At the present time, fundamental solutions of a multidimensional elliptic equation with one degeneration line are already known. In this paper, we investigate the double‐ and simple‐layer potentials for this kind of elliptic equations. Results from potential theory allow us to represent the solution of the boundary value problems in the form of an integral equation. By using some properties of the Gaussian hypergeometric function, we first prove limiting theorems and derive integral equations concerning the densities of the double‐ and simple‐layer potentials. The obtained results are then applied in order to find an explicit solution of the Holmgren problem for the multidimensional singular elliptic equation in the half of the ball.</description><subject>Boundary value problems</subject><subject>Degeneration</subject><subject>Elliptic functions</subject><subject>fundamental solutions</subject><subject>gauss‐ostrogradsky formula</subject><subject>Green's function</subject><subject>Holmgren problem</subject><subject>Hypergeometric functions</subject><subject>Integral equations</subject><subject>Mathematical analysis</subject><subject>multidimensional elliptic equations with one singular coefficient</subject><subject>Potential theory</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10E9LwzAYBvAgCs4p-BECXrx05k2ytjmO4T_Y8KLnkKaJy2ibLkkZ-_Z21qun9_J7nhcehO6BLIAQ-tS2apGzfHmBZkCEyIAX-SWaEShIxinwa3QT454QUgLQGapW2KrWNSfsLe59Ml1yqonY-oBN07g-OY3NYVDJ-S7io0s77DuDo-u-h0YFrL2x1mk3BrHqapx2xgWs-r5xegrdois7Vpq7vztHXy_Pn-u3bPPx-r5ebTJNBVtmlFUFlMCWtdKk4loYyMvaGsqEEKYCyOuiorUVgjCAkljDGIiyEhVTotCMzdHD1NsHfxhMTHLvh9CNLyXlRHDBS35Wj5PSwccYjJV9cK0KJwlEnheU44LyvOBIs4keXWNO_zq53a5-_Q8oKHJf</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Srivastava, Hari M.</creator><creator>Hasanov, Anvar</creator><creator>Gulamjanovich Ergashev, Tuhtasin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-9277-8092</orcidid></search><sort><creationdate>20200715</creationdate><title>A family of potentials for elliptic equations with one singular coefficient and their applications</title><author>Srivastava, Hari M. ; Hasanov, Anvar ; Gulamjanovich Ergashev, Tuhtasin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2935-23b718135dac0b4c9e168dfe23999eb116d7b2df99031180fe33198b9b3a97c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary value problems</topic><topic>Degeneration</topic><topic>Elliptic functions</topic><topic>fundamental solutions</topic><topic>gauss‐ostrogradsky formula</topic><topic>Green's function</topic><topic>Holmgren problem</topic><topic>Hypergeometric functions</topic><topic>Integral equations</topic><topic>Mathematical analysis</topic><topic>multidimensional elliptic equations with one singular coefficient</topic><topic>Potential theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srivastava, Hari M.</creatorcontrib><creatorcontrib>Hasanov, Anvar</creatorcontrib><creatorcontrib>Gulamjanovich Ergashev, Tuhtasin</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srivastava, Hari M.</au><au>Hasanov, Anvar</au><au>Gulamjanovich Ergashev, Tuhtasin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A family of potentials for elliptic equations with one singular coefficient and their applications</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>43</volume><issue>10</issue><spage>6181</spage><epage>6199</epage><pages>6181-6199</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>Potentials play an important role in solving boundary value problems for elliptic equations. In the middle of the last century, a potential theory was constructed for a two‐dimensional elliptic equation with one singular coefficient. In the study of potentials, the properties of the fundamental solutions of the given equation are essentially and fruitfully used. At the present time, fundamental solutions of a multidimensional elliptic equation with one degeneration line are already known. In this paper, we investigate the double‐ and simple‐layer potentials for this kind of elliptic equations. Results from potential theory allow us to represent the solution of the boundary value problems in the form of an integral equation. By using some properties of the Gaussian hypergeometric function, we first prove limiting theorems and derive integral equations concerning the densities of the double‐ and simple‐layer potentials. The obtained results are then applied in order to find an explicit solution of the Holmgren problem for the multidimensional singular elliptic equation in the half of the ball.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6365</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9277-8092</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2020-07, Vol.43 (10), p.6181-6199
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2409494843
source Wiley Online Library Journals Frontfile Complete
subjects Boundary value problems
Degeneration
Elliptic functions
fundamental solutions
gauss‐ostrogradsky formula
Green's function
Holmgren problem
Hypergeometric functions
Integral equations
Mathematical analysis
multidimensional elliptic equations with one singular coefficient
Potential theory
title A family of potentials for elliptic equations with one singular coefficient and their applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20family%20of%20potentials%20for%20elliptic%20equations%20with%20one%20singular%20coefficient%20and%20their%20applications&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Srivastava,%20Hari%20M.&rft.date=2020-07-15&rft.volume=43&rft.issue=10&rft.spage=6181&rft.epage=6199&rft.pages=6181-6199&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6365&rft_dat=%3Cproquest_cross%3E2409494843%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409494843&rft_id=info:pmid/&rfr_iscdi=true