Kinetic evaluation of sterically hindered amines under partial oxy‐combustion conditions

BACKGROUND Carbon capture and storage is considered one of the pillars that should support greenhouse gas (GHG) emission mitigation by 2050. In this sense, partial oxy‐combustion emerges as a promising alternative. Its advantages rely on the production of a higher CO2 concentration flue gas than the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical technology and biotechnology (1986) 2020-07, Vol.95 (7), p.1858-1864
Hauptverfasser: Camino, Sara, Vega, Fernando, Gallego Fernández, Luz M, Cano, Mercedes, Camino, José A, Navarrete, Benito
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1864
container_issue 7
container_start_page 1858
container_title Journal of chemical technology and biotechnology (1986)
container_volume 95
creator Camino, Sara
Vega, Fernando
Gallego Fernández, Luz M
Cano, Mercedes
Camino, José A
Navarrete, Benito
description BACKGROUND Carbon capture and storage is considered one of the pillars that should support greenhouse gas (GHG) emission mitigation by 2050. In this sense, partial oxy‐combustion emerges as a promising alternative. Its advantages rely on the production of a higher CO2 concentration flue gas than these provided by conventional air‐firing processes. The use of higher CO2 concentrations should improve the solvent kinetic and the CO2 cyclic capacity. RESULTS The kinetic behaviour of two representative sterically hindered amines, namely 2‐amino‐2‐methyl‐1‐propanol (AMP) and isophrondiamine (IF), were studied under partial oxy‐combustion conditions in a laboratory‐scale semi‐batch reactor. The CO2 concentration varied from 15%v/v to 60%v/v. The kinetic enhancement experienced by AMP at high CO2 concentration was slightly >60%, instead of 70–80% for IF. AMP also improved its CO2 absorption capacity by 24.7%, from 15%v/v to 60%v/v, almost doubled the improvements achieved by monoethanolamine (MEA). In the case of IF experiments, the CO2 loading increased ≈10% from 15%v/v to 60%v/v CO2 and it changed from 1.10 to 1.34 mol CO2 mol–1 solvent, representing a >20% increase. CONCLUSIONS The presence of higher CO2 concentrations accelerated CO2 absorption and provided higher CO2 absorption rates. In addition, the evolution of the CO2 loading also exhibited higher values in the experiments using higher CO2 concentration flue gas. The steric hindrance causes a hybrid behaviour in these solvents, between both fast and slow kinetic solvents. The kinetic rates observed using AMP were slightly higher than MEA, but lower than IF which showed the fastest kinetics. © 2020 Society of Chemical Industry
doi_str_mv 10.1002/jctb.6351
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409412143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409412143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3341-7c896abe15aa0d6e8e7176fb03bc23a33b03998e5b7788a6e316015bd0d137e63</originalsourceid><addsrcrecordid>eNp1kL9OwzAQhy0EEqUw8AaWmBjSnuPETkao-I_EUhYWy3EuwlUaFzsBsvEIPCNPQtKyMt3vpO93J32EnDKYMYB4vjJtMRM8ZXtkwiCXUSIE7JMJxCKL4lSmh-QohBUAiCwWE_LyYBtsraH4rutOt9Y11FU0tOit0XXd01fblOixpHo9oIF240o32rdW19R99j9f38atiy5sy8Y1pR1TOCYHla4DnvzNKXm-vloubqPHp5u7xcVjZDhPWCRNlgtdIEu1hlJghpJJURXACxNzzfmQ8jzDtJAyy7RAzgSwtCihZFyi4FNytru78e6tw9Cqlet8M7xUcQJ5wmKW8IE631HGuxA8Vmrj7Vr7XjFQozo1qlOjuoGd79gPW2P_P6juF8vLbeMXz85yig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409412143</pqid></control><display><type>article</type><title>Kinetic evaluation of sterically hindered amines under partial oxy‐combustion conditions</title><source>Access via Wiley Online Library</source><creator>Camino, Sara ; Vega, Fernando ; Gallego Fernández, Luz M ; Cano, Mercedes ; Camino, José A ; Navarrete, Benito</creator><creatorcontrib>Camino, Sara ; Vega, Fernando ; Gallego Fernández, Luz M ; Cano, Mercedes ; Camino, José A ; Navarrete, Benito</creatorcontrib><description>BACKGROUND Carbon capture and storage is considered one of the pillars that should support greenhouse gas (GHG) emission mitigation by 2050. In this sense, partial oxy‐combustion emerges as a promising alternative. Its advantages rely on the production of a higher CO2 concentration flue gas than these provided by conventional air‐firing processes. The use of higher CO2 concentrations should improve the solvent kinetic and the CO2 cyclic capacity. RESULTS The kinetic behaviour of two representative sterically hindered amines, namely 2‐amino‐2‐methyl‐1‐propanol (AMP) and isophrondiamine (IF), were studied under partial oxy‐combustion conditions in a laboratory‐scale semi‐batch reactor. The CO2 concentration varied from 15%v/v to 60%v/v. The kinetic enhancement experienced by AMP at high CO2 concentration was slightly &gt;60%, instead of 70–80% for IF. AMP also improved its CO2 absorption capacity by 24.7%, from 15%v/v to 60%v/v, almost doubled the improvements achieved by monoethanolamine (MEA). In the case of IF experiments, the CO2 loading increased ≈10% from 15%v/v to 60%v/v CO2 and it changed from 1.10 to 1.34 mol CO2 mol–1 solvent, representing a &gt;20% increase. CONCLUSIONS The presence of higher CO2 concentrations accelerated CO2 absorption and provided higher CO2 absorption rates. In addition, the evolution of the CO2 loading also exhibited higher values in the experiments using higher CO2 concentration flue gas. The steric hindrance causes a hybrid behaviour in these solvents, between both fast and slow kinetic solvents. The kinetic rates observed using AMP were slightly higher than MEA, but lower than IF which showed the fastest kinetics. © 2020 Society of Chemical Industry</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.6351</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Absorption ; Amines ; AMP ; Batch reactors ; carbon capture ; Carbon dioxide ; Carbon sequestration ; clean processes ; Combustion ; emissions ; Flue gas ; Greenhouse effect ; Greenhouse gases ; kinetics ; Monoethanolamine (MEA) ; pollution control ; Propanol ; Reaction kinetics ; separation ; Solvents ; Steric hindrance</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2020-07, Vol.95 (7), p.1858-1864</ispartof><rights>2020 Society of Chemical Industry</rights><rights>Copyright © 2020 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3341-7c896abe15aa0d6e8e7176fb03bc23a33b03998e5b7788a6e316015bd0d137e63</citedby><cites>FETCH-LOGICAL-c3341-7c896abe15aa0d6e8e7176fb03bc23a33b03998e5b7788a6e316015bd0d137e63</cites><orcidid>0000-0001-5964-5581</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjctb.6351$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjctb.6351$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Camino, Sara</creatorcontrib><creatorcontrib>Vega, Fernando</creatorcontrib><creatorcontrib>Gallego Fernández, Luz M</creatorcontrib><creatorcontrib>Cano, Mercedes</creatorcontrib><creatorcontrib>Camino, José A</creatorcontrib><creatorcontrib>Navarrete, Benito</creatorcontrib><title>Kinetic evaluation of sterically hindered amines under partial oxy‐combustion conditions</title><title>Journal of chemical technology and biotechnology (1986)</title><description>BACKGROUND Carbon capture and storage is considered one of the pillars that should support greenhouse gas (GHG) emission mitigation by 2050. In this sense, partial oxy‐combustion emerges as a promising alternative. Its advantages rely on the production of a higher CO2 concentration flue gas than these provided by conventional air‐firing processes. The use of higher CO2 concentrations should improve the solvent kinetic and the CO2 cyclic capacity. RESULTS The kinetic behaviour of two representative sterically hindered amines, namely 2‐amino‐2‐methyl‐1‐propanol (AMP) and isophrondiamine (IF), were studied under partial oxy‐combustion conditions in a laboratory‐scale semi‐batch reactor. The CO2 concentration varied from 15%v/v to 60%v/v. The kinetic enhancement experienced by AMP at high CO2 concentration was slightly &gt;60%, instead of 70–80% for IF. AMP also improved its CO2 absorption capacity by 24.7%, from 15%v/v to 60%v/v, almost doubled the improvements achieved by monoethanolamine (MEA). In the case of IF experiments, the CO2 loading increased ≈10% from 15%v/v to 60%v/v CO2 and it changed from 1.10 to 1.34 mol CO2 mol–1 solvent, representing a &gt;20% increase. CONCLUSIONS The presence of higher CO2 concentrations accelerated CO2 absorption and provided higher CO2 absorption rates. In addition, the evolution of the CO2 loading also exhibited higher values in the experiments using higher CO2 concentration flue gas. The steric hindrance causes a hybrid behaviour in these solvents, between both fast and slow kinetic solvents. The kinetic rates observed using AMP were slightly higher than MEA, but lower than IF which showed the fastest kinetics. © 2020 Society of Chemical Industry</description><subject>Absorption</subject><subject>Amines</subject><subject>AMP</subject><subject>Batch reactors</subject><subject>carbon capture</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>clean processes</subject><subject>Combustion</subject><subject>emissions</subject><subject>Flue gas</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>kinetics</subject><subject>Monoethanolamine (MEA)</subject><subject>pollution control</subject><subject>Propanol</subject><subject>Reaction kinetics</subject><subject>separation</subject><subject>Solvents</subject><subject>Steric hindrance</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kL9OwzAQhy0EEqUw8AaWmBjSnuPETkao-I_EUhYWy3EuwlUaFzsBsvEIPCNPQtKyMt3vpO93J32EnDKYMYB4vjJtMRM8ZXtkwiCXUSIE7JMJxCKL4lSmh-QohBUAiCwWE_LyYBtsraH4rutOt9Y11FU0tOit0XXd01fblOixpHo9oIF240o32rdW19R99j9f38atiy5sy8Y1pR1TOCYHla4DnvzNKXm-vloubqPHp5u7xcVjZDhPWCRNlgtdIEu1hlJghpJJURXACxNzzfmQ8jzDtJAyy7RAzgSwtCihZFyi4FNytru78e6tw9Cqlet8M7xUcQJ5wmKW8IE631HGuxA8Vmrj7Vr7XjFQozo1qlOjuoGd79gPW2P_P6juF8vLbeMXz85yig</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Camino, Sara</creator><creator>Vega, Fernando</creator><creator>Gallego Fernández, Luz M</creator><creator>Cano, Mercedes</creator><creator>Camino, José A</creator><creator>Navarrete, Benito</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-5964-5581</orcidid></search><sort><creationdate>202007</creationdate><title>Kinetic evaluation of sterically hindered amines under partial oxy‐combustion conditions</title><author>Camino, Sara ; Vega, Fernando ; Gallego Fernández, Luz M ; Cano, Mercedes ; Camino, José A ; Navarrete, Benito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3341-7c896abe15aa0d6e8e7176fb03bc23a33b03998e5b7788a6e316015bd0d137e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>Amines</topic><topic>AMP</topic><topic>Batch reactors</topic><topic>carbon capture</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>clean processes</topic><topic>Combustion</topic><topic>emissions</topic><topic>Flue gas</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>kinetics</topic><topic>Monoethanolamine (MEA)</topic><topic>pollution control</topic><topic>Propanol</topic><topic>Reaction kinetics</topic><topic>separation</topic><topic>Solvents</topic><topic>Steric hindrance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camino, Sara</creatorcontrib><creatorcontrib>Vega, Fernando</creatorcontrib><creatorcontrib>Gallego Fernández, Luz M</creatorcontrib><creatorcontrib>Cano, Mercedes</creatorcontrib><creatorcontrib>Camino, José A</creatorcontrib><creatorcontrib>Navarrete, Benito</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camino, Sara</au><au>Vega, Fernando</au><au>Gallego Fernández, Luz M</au><au>Cano, Mercedes</au><au>Camino, José A</au><au>Navarrete, Benito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic evaluation of sterically hindered amines under partial oxy‐combustion conditions</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><date>2020-07</date><risdate>2020</risdate><volume>95</volume><issue>7</issue><spage>1858</spage><epage>1864</epage><pages>1858-1864</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>BACKGROUND Carbon capture and storage is considered one of the pillars that should support greenhouse gas (GHG) emission mitigation by 2050. In this sense, partial oxy‐combustion emerges as a promising alternative. Its advantages rely on the production of a higher CO2 concentration flue gas than these provided by conventional air‐firing processes. The use of higher CO2 concentrations should improve the solvent kinetic and the CO2 cyclic capacity. RESULTS The kinetic behaviour of two representative sterically hindered amines, namely 2‐amino‐2‐methyl‐1‐propanol (AMP) and isophrondiamine (IF), were studied under partial oxy‐combustion conditions in a laboratory‐scale semi‐batch reactor. The CO2 concentration varied from 15%v/v to 60%v/v. The kinetic enhancement experienced by AMP at high CO2 concentration was slightly &gt;60%, instead of 70–80% for IF. AMP also improved its CO2 absorption capacity by 24.7%, from 15%v/v to 60%v/v, almost doubled the improvements achieved by monoethanolamine (MEA). In the case of IF experiments, the CO2 loading increased ≈10% from 15%v/v to 60%v/v CO2 and it changed from 1.10 to 1.34 mol CO2 mol–1 solvent, representing a &gt;20% increase. CONCLUSIONS The presence of higher CO2 concentrations accelerated CO2 absorption and provided higher CO2 absorption rates. In addition, the evolution of the CO2 loading also exhibited higher values in the experiments using higher CO2 concentration flue gas. The steric hindrance causes a hybrid behaviour in these solvents, between both fast and slow kinetic solvents. The kinetic rates observed using AMP were slightly higher than MEA, but lower than IF which showed the fastest kinetics. © 2020 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/jctb.6351</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5964-5581</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-2575
ispartof Journal of chemical technology and biotechnology (1986), 2020-07, Vol.95 (7), p.1858-1864
issn 0268-2575
1097-4660
language eng
recordid cdi_proquest_journals_2409412143
source Access via Wiley Online Library
subjects Absorption
Amines
AMP
Batch reactors
carbon capture
Carbon dioxide
Carbon sequestration
clean processes
Combustion
emissions
Flue gas
Greenhouse effect
Greenhouse gases
kinetics
Monoethanolamine (MEA)
pollution control
Propanol
Reaction kinetics
separation
Solvents
Steric hindrance
title Kinetic evaluation of sterically hindered amines under partial oxy‐combustion conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A50%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20evaluation%20of%20sterically%20hindered%20amines%20under%20partial%20oxy%E2%80%90combustion%20conditions&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Camino,%20Sara&rft.date=2020-07&rft.volume=95&rft.issue=7&rft.spage=1858&rft.epage=1864&rft.pages=1858-1864&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.6351&rft_dat=%3Cproquest_cross%3E2409412143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409412143&rft_id=info:pmid/&rfr_iscdi=true