Kinetic evaluation of sterically hindered amines under partial oxy‐combustion conditions
BACKGROUND Carbon capture and storage is considered one of the pillars that should support greenhouse gas (GHG) emission mitigation by 2050. In this sense, partial oxy‐combustion emerges as a promising alternative. Its advantages rely on the production of a higher CO2 concentration flue gas than the...
Gespeichert in:
Veröffentlicht in: | Journal of chemical technology and biotechnology (1986) 2020-07, Vol.95 (7), p.1858-1864 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1864 |
---|---|
container_issue | 7 |
container_start_page | 1858 |
container_title | Journal of chemical technology and biotechnology (1986) |
container_volume | 95 |
creator | Camino, Sara Vega, Fernando Gallego Fernández, Luz M Cano, Mercedes Camino, José A Navarrete, Benito |
description | BACKGROUND
Carbon capture and storage is considered one of the pillars that should support greenhouse gas (GHG) emission mitigation by 2050. In this sense, partial oxy‐combustion emerges as a promising alternative. Its advantages rely on the production of a higher CO2 concentration flue gas than these provided by conventional air‐firing processes. The use of higher CO2 concentrations should improve the solvent kinetic and the CO2 cyclic capacity.
RESULTS
The kinetic behaviour of two representative sterically hindered amines, namely 2‐amino‐2‐methyl‐1‐propanol (AMP) and isophrondiamine (IF), were studied under partial oxy‐combustion conditions in a laboratory‐scale semi‐batch reactor. The CO2 concentration varied from 15%v/v to 60%v/v. The kinetic enhancement experienced by AMP at high CO2 concentration was slightly >60%, instead of 70–80% for IF. AMP also improved its CO2 absorption capacity by 24.7%, from 15%v/v to 60%v/v, almost doubled the improvements achieved by monoethanolamine (MEA). In the case of IF experiments, the CO2 loading increased ≈10% from 15%v/v to 60%v/v CO2 and it changed from 1.10 to 1.34 mol CO2 mol–1 solvent, representing a >20% increase.
CONCLUSIONS
The presence of higher CO2 concentrations accelerated CO2 absorption and provided higher CO2 absorption rates. In addition, the evolution of the CO2 loading also exhibited higher values in the experiments using higher CO2 concentration flue gas. The steric hindrance causes a hybrid behaviour in these solvents, between both fast and slow kinetic solvents. The kinetic rates observed using AMP were slightly higher than MEA, but lower than IF which showed the fastest kinetics. © 2020 Society of Chemical Industry |
doi_str_mv | 10.1002/jctb.6351 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409412143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409412143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3341-7c896abe15aa0d6e8e7176fb03bc23a33b03998e5b7788a6e316015bd0d137e63</originalsourceid><addsrcrecordid>eNp1kL9OwzAQhy0EEqUw8AaWmBjSnuPETkao-I_EUhYWy3EuwlUaFzsBsvEIPCNPQtKyMt3vpO93J32EnDKYMYB4vjJtMRM8ZXtkwiCXUSIE7JMJxCKL4lSmh-QohBUAiCwWE_LyYBtsraH4rutOt9Y11FU0tOit0XXd01fblOixpHo9oIF240o32rdW19R99j9f38atiy5sy8Y1pR1TOCYHla4DnvzNKXm-vloubqPHp5u7xcVjZDhPWCRNlgtdIEu1hlJghpJJURXACxNzzfmQ8jzDtJAyy7RAzgSwtCihZFyi4FNytru78e6tw9Cqlet8M7xUcQJ5wmKW8IE631HGuxA8Vmrj7Vr7XjFQozo1qlOjuoGd79gPW2P_P6juF8vLbeMXz85yig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409412143</pqid></control><display><type>article</type><title>Kinetic evaluation of sterically hindered amines under partial oxy‐combustion conditions</title><source>Access via Wiley Online Library</source><creator>Camino, Sara ; Vega, Fernando ; Gallego Fernández, Luz M ; Cano, Mercedes ; Camino, José A ; Navarrete, Benito</creator><creatorcontrib>Camino, Sara ; Vega, Fernando ; Gallego Fernández, Luz M ; Cano, Mercedes ; Camino, José A ; Navarrete, Benito</creatorcontrib><description>BACKGROUND
Carbon capture and storage is considered one of the pillars that should support greenhouse gas (GHG) emission mitigation by 2050. In this sense, partial oxy‐combustion emerges as a promising alternative. Its advantages rely on the production of a higher CO2 concentration flue gas than these provided by conventional air‐firing processes. The use of higher CO2 concentrations should improve the solvent kinetic and the CO2 cyclic capacity.
RESULTS
The kinetic behaviour of two representative sterically hindered amines, namely 2‐amino‐2‐methyl‐1‐propanol (AMP) and isophrondiamine (IF), were studied under partial oxy‐combustion conditions in a laboratory‐scale semi‐batch reactor. The CO2 concentration varied from 15%v/v to 60%v/v. The kinetic enhancement experienced by AMP at high CO2 concentration was slightly >60%, instead of 70–80% for IF. AMP also improved its CO2 absorption capacity by 24.7%, from 15%v/v to 60%v/v, almost doubled the improvements achieved by monoethanolamine (MEA). In the case of IF experiments, the CO2 loading increased ≈10% from 15%v/v to 60%v/v CO2 and it changed from 1.10 to 1.34 mol CO2 mol–1 solvent, representing a >20% increase.
CONCLUSIONS
The presence of higher CO2 concentrations accelerated CO2 absorption and provided higher CO2 absorption rates. In addition, the evolution of the CO2 loading also exhibited higher values in the experiments using higher CO2 concentration flue gas. The steric hindrance causes a hybrid behaviour in these solvents, between both fast and slow kinetic solvents. The kinetic rates observed using AMP were slightly higher than MEA, but lower than IF which showed the fastest kinetics. © 2020 Society of Chemical Industry</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.6351</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Absorption ; Amines ; AMP ; Batch reactors ; carbon capture ; Carbon dioxide ; Carbon sequestration ; clean processes ; Combustion ; emissions ; Flue gas ; Greenhouse effect ; Greenhouse gases ; kinetics ; Monoethanolamine (MEA) ; pollution control ; Propanol ; Reaction kinetics ; separation ; Solvents ; Steric hindrance</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2020-07, Vol.95 (7), p.1858-1864</ispartof><rights>2020 Society of Chemical Industry</rights><rights>Copyright © 2020 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3341-7c896abe15aa0d6e8e7176fb03bc23a33b03998e5b7788a6e316015bd0d137e63</citedby><cites>FETCH-LOGICAL-c3341-7c896abe15aa0d6e8e7176fb03bc23a33b03998e5b7788a6e316015bd0d137e63</cites><orcidid>0000-0001-5964-5581</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjctb.6351$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjctb.6351$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Camino, Sara</creatorcontrib><creatorcontrib>Vega, Fernando</creatorcontrib><creatorcontrib>Gallego Fernández, Luz M</creatorcontrib><creatorcontrib>Cano, Mercedes</creatorcontrib><creatorcontrib>Camino, José A</creatorcontrib><creatorcontrib>Navarrete, Benito</creatorcontrib><title>Kinetic evaluation of sterically hindered amines under partial oxy‐combustion conditions</title><title>Journal of chemical technology and biotechnology (1986)</title><description>BACKGROUND
Carbon capture and storage is considered one of the pillars that should support greenhouse gas (GHG) emission mitigation by 2050. In this sense, partial oxy‐combustion emerges as a promising alternative. Its advantages rely on the production of a higher CO2 concentration flue gas than these provided by conventional air‐firing processes. The use of higher CO2 concentrations should improve the solvent kinetic and the CO2 cyclic capacity.
RESULTS
The kinetic behaviour of two representative sterically hindered amines, namely 2‐amino‐2‐methyl‐1‐propanol (AMP) and isophrondiamine (IF), were studied under partial oxy‐combustion conditions in a laboratory‐scale semi‐batch reactor. The CO2 concentration varied from 15%v/v to 60%v/v. The kinetic enhancement experienced by AMP at high CO2 concentration was slightly >60%, instead of 70–80% for IF. AMP also improved its CO2 absorption capacity by 24.7%, from 15%v/v to 60%v/v, almost doubled the improvements achieved by monoethanolamine (MEA). In the case of IF experiments, the CO2 loading increased ≈10% from 15%v/v to 60%v/v CO2 and it changed from 1.10 to 1.34 mol CO2 mol–1 solvent, representing a >20% increase.
CONCLUSIONS
The presence of higher CO2 concentrations accelerated CO2 absorption and provided higher CO2 absorption rates. In addition, the evolution of the CO2 loading also exhibited higher values in the experiments using higher CO2 concentration flue gas. The steric hindrance causes a hybrid behaviour in these solvents, between both fast and slow kinetic solvents. The kinetic rates observed using AMP were slightly higher than MEA, but lower than IF which showed the fastest kinetics. © 2020 Society of Chemical Industry</description><subject>Absorption</subject><subject>Amines</subject><subject>AMP</subject><subject>Batch reactors</subject><subject>carbon capture</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>clean processes</subject><subject>Combustion</subject><subject>emissions</subject><subject>Flue gas</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>kinetics</subject><subject>Monoethanolamine (MEA)</subject><subject>pollution control</subject><subject>Propanol</subject><subject>Reaction kinetics</subject><subject>separation</subject><subject>Solvents</subject><subject>Steric hindrance</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kL9OwzAQhy0EEqUw8AaWmBjSnuPETkao-I_EUhYWy3EuwlUaFzsBsvEIPCNPQtKyMt3vpO93J32EnDKYMYB4vjJtMRM8ZXtkwiCXUSIE7JMJxCKL4lSmh-QohBUAiCwWE_LyYBtsraH4rutOt9Y11FU0tOit0XXd01fblOixpHo9oIF240o32rdW19R99j9f38atiy5sy8Y1pR1TOCYHla4DnvzNKXm-vloubqPHp5u7xcVjZDhPWCRNlgtdIEu1hlJghpJJURXACxNzzfmQ8jzDtJAyy7RAzgSwtCihZFyi4FNytru78e6tw9Cqlet8M7xUcQJ5wmKW8IE631HGuxA8Vmrj7Vr7XjFQozo1qlOjuoGd79gPW2P_P6juF8vLbeMXz85yig</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Camino, Sara</creator><creator>Vega, Fernando</creator><creator>Gallego Fernández, Luz M</creator><creator>Cano, Mercedes</creator><creator>Camino, José A</creator><creator>Navarrete, Benito</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-5964-5581</orcidid></search><sort><creationdate>202007</creationdate><title>Kinetic evaluation of sterically hindered amines under partial oxy‐combustion conditions</title><author>Camino, Sara ; Vega, Fernando ; Gallego Fernández, Luz M ; Cano, Mercedes ; Camino, José A ; Navarrete, Benito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3341-7c896abe15aa0d6e8e7176fb03bc23a33b03998e5b7788a6e316015bd0d137e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>Amines</topic><topic>AMP</topic><topic>Batch reactors</topic><topic>carbon capture</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>clean processes</topic><topic>Combustion</topic><topic>emissions</topic><topic>Flue gas</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>kinetics</topic><topic>Monoethanolamine (MEA)</topic><topic>pollution control</topic><topic>Propanol</topic><topic>Reaction kinetics</topic><topic>separation</topic><topic>Solvents</topic><topic>Steric hindrance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camino, Sara</creatorcontrib><creatorcontrib>Vega, Fernando</creatorcontrib><creatorcontrib>Gallego Fernández, Luz M</creatorcontrib><creatorcontrib>Cano, Mercedes</creatorcontrib><creatorcontrib>Camino, José A</creatorcontrib><creatorcontrib>Navarrete, Benito</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camino, Sara</au><au>Vega, Fernando</au><au>Gallego Fernández, Luz M</au><au>Cano, Mercedes</au><au>Camino, José A</au><au>Navarrete, Benito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic evaluation of sterically hindered amines under partial oxy‐combustion conditions</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><date>2020-07</date><risdate>2020</risdate><volume>95</volume><issue>7</issue><spage>1858</spage><epage>1864</epage><pages>1858-1864</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>BACKGROUND
Carbon capture and storage is considered one of the pillars that should support greenhouse gas (GHG) emission mitigation by 2050. In this sense, partial oxy‐combustion emerges as a promising alternative. Its advantages rely on the production of a higher CO2 concentration flue gas than these provided by conventional air‐firing processes. The use of higher CO2 concentrations should improve the solvent kinetic and the CO2 cyclic capacity.
RESULTS
The kinetic behaviour of two representative sterically hindered amines, namely 2‐amino‐2‐methyl‐1‐propanol (AMP) and isophrondiamine (IF), were studied under partial oxy‐combustion conditions in a laboratory‐scale semi‐batch reactor. The CO2 concentration varied from 15%v/v to 60%v/v. The kinetic enhancement experienced by AMP at high CO2 concentration was slightly >60%, instead of 70–80% for IF. AMP also improved its CO2 absorption capacity by 24.7%, from 15%v/v to 60%v/v, almost doubled the improvements achieved by monoethanolamine (MEA). In the case of IF experiments, the CO2 loading increased ≈10% from 15%v/v to 60%v/v CO2 and it changed from 1.10 to 1.34 mol CO2 mol–1 solvent, representing a >20% increase.
CONCLUSIONS
The presence of higher CO2 concentrations accelerated CO2 absorption and provided higher CO2 absorption rates. In addition, the evolution of the CO2 loading also exhibited higher values in the experiments using higher CO2 concentration flue gas. The steric hindrance causes a hybrid behaviour in these solvents, between both fast and slow kinetic solvents. The kinetic rates observed using AMP were slightly higher than MEA, but lower than IF which showed the fastest kinetics. © 2020 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/jctb.6351</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5964-5581</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-2575 |
ispartof | Journal of chemical technology and biotechnology (1986), 2020-07, Vol.95 (7), p.1858-1864 |
issn | 0268-2575 1097-4660 |
language | eng |
recordid | cdi_proquest_journals_2409412143 |
source | Access via Wiley Online Library |
subjects | Absorption Amines AMP Batch reactors carbon capture Carbon dioxide Carbon sequestration clean processes Combustion emissions Flue gas Greenhouse effect Greenhouse gases kinetics Monoethanolamine (MEA) pollution control Propanol Reaction kinetics separation Solvents Steric hindrance |
title | Kinetic evaluation of sterically hindered amines under partial oxy‐combustion conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A50%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20evaluation%20of%20sterically%20hindered%20amines%20under%20partial%20oxy%E2%80%90combustion%20conditions&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Camino,%20Sara&rft.date=2020-07&rft.volume=95&rft.issue=7&rft.spage=1858&rft.epage=1864&rft.pages=1858-1864&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.6351&rft_dat=%3Cproquest_cross%3E2409412143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409412143&rft_id=info:pmid/&rfr_iscdi=true |