3D-GLCM CNN: A 3-Dimensional Gray-Level Co-Occurrence Matrix-Based CNN Model for Polyp Classification via CT Colonography

Accurately classifying colorectal polyps, or differentiating malignant from benign ones, has a significant clinical impact on early detection and identifying optimal treatment of colorectal cancer. Convolution neural network (CNN) has shown great potential in recognizing different objects (e.g. huma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2020-06, Vol.39 (6), p.2013-2024
Hauptverfasser: Tan, Jiaxing, Gao, Yongfeng, Liang, Zhengrong, Cao, Weiguo, Pomeroy, Marc J., Huo, Yumei, Li, Lihong, Barish, Matthew A., Abbasi, Almas F., Pickhardt, Perry J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2024
container_issue 6
container_start_page 2013
container_title IEEE transactions on medical imaging
container_volume 39
creator Tan, Jiaxing
Gao, Yongfeng
Liang, Zhengrong
Cao, Weiguo
Pomeroy, Marc J.
Huo, Yumei
Li, Lihong
Barish, Matthew A.
Abbasi, Almas F.
Pickhardt, Perry J.
description Accurately classifying colorectal polyps, or differentiating malignant from benign ones, has a significant clinical impact on early detection and identifying optimal treatment of colorectal cancer. Convolution neural network (CNN) has shown great potential in recognizing different objects (e.g. human faces) from multiple slice (or color) images, a task similar to the polyp differentiation, given a large learning database. This study explores the potential of CNN learning from multiple slice (or feature) images to differentiate malignant from benign polyps from a relatively small database with pathological ground truth, including 32 malignant and 31 benign polyps represented by volumetric computed tomographic (CT) images. The feature image in this investigation is the gray-level co-occurrence matrix (GLCM). For each volumetric polyp, there are 13 GLCMs, computed from each of the 13 directions through the polyp volume. For comparison purpose, the CNN learning is also applied to the multi-slice CT images of the volumetric polyps. The comparison study is further extended to include Random Forest (RF) classification of the Haralick texture features (derived from the GLCMs). From the relatively small database, this study achieved scores of 0.91/0.93 (two-fold/leave-one-out evaluations) AUC (area under curve of the receiver operating characteristics) by using the CNN on the GLCMs, while the RF reached 0.84/0.86 AUC on the Haralick features and the CNN rendered 0.79/0.80 AUC on the multiple-slice CT images. The presented CNN learning from the GLCMs can relieve the challenge associated with relatively small database, improve the classification performance over the CNN on the raw CT images and the RF on the Haralick features, and have the potential to perform the clinical task of differentiating malignant from benign polyps with pathological ground truth.
doi_str_mv 10.1109/TMI.2019.2963177
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2409385103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8945384</ieee_id><sourcerecordid>2333602378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-6a660ec76e4d93fab1cf8ef632d53af8ff30107bc8de33222d16658d111a98303</originalsourceid><addsrcrecordid>eNpdkU1vEzEURS0Eomlhj4SELLFh4-Cv8dgsKpUphEpJyyJI7CzHY7euJuNgZ6LOv8dRQgSsvHjnHj2_C8AbgqeEYPVxubiZUkzUlCrBSF0_AxNSVRLRiv98DiaY1hJhLOgZOM_5EWPCK6xegjNGpFKcqAkY2TWazZsFbG5vP8EryNB1WLs-h9ibDs6SGdHc7VwHm4jurB1Scr11cGG2KTyhzya7dh-Fi9gWyMcEv8du3MCmMzkHH6zZFhXcBQObZZF0sY_3yWwexlfghTdddq-P7wX48fXLsvmG5nezm-ZqjiznfIuEEQI7WwvHW8W8WRHrpfOC0bZixkvvGSa4XlnZOsYopS0RopItIcQoyTC7AJcH72ZYrV1rXb9NptObFNYmjTqaoP-d9OFB38edrqlQktAi-HAUpPhrcHmr1yFb13Wmd3HImjLGBKaslgV9_x_6GIdULlkojhWTFcGsUPhA2RRzTs6fliFY73vVpVe971Ufey2Rd39_4hT4U2QB3h6A4Jw7jaXiFZOc_QaM0KVy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409385103</pqid></control><display><type>article</type><title>3D-GLCM CNN: A 3-Dimensional Gray-Level Co-Occurrence Matrix-Based CNN Model for Polyp Classification via CT Colonography</title><source>IEEE Electronic Library (IEL)</source><creator>Tan, Jiaxing ; Gao, Yongfeng ; Liang, Zhengrong ; Cao, Weiguo ; Pomeroy, Marc J. ; Huo, Yumei ; Li, Lihong ; Barish, Matthew A. ; Abbasi, Almas F. ; Pickhardt, Perry J.</creator><creatorcontrib>Tan, Jiaxing ; Gao, Yongfeng ; Liang, Zhengrong ; Cao, Weiguo ; Pomeroy, Marc J. ; Huo, Yumei ; Li, Lihong ; Barish, Matthew A. ; Abbasi, Almas F. ; Pickhardt, Perry J.</creatorcontrib><description>Accurately classifying colorectal polyps, or differentiating malignant from benign ones, has a significant clinical impact on early detection and identifying optimal treatment of colorectal cancer. Convolution neural network (CNN) has shown great potential in recognizing different objects (e.g. human faces) from multiple slice (or color) images, a task similar to the polyp differentiation, given a large learning database. This study explores the potential of CNN learning from multiple slice (or feature) images to differentiate malignant from benign polyps from a relatively small database with pathological ground truth, including 32 malignant and 31 benign polyps represented by volumetric computed tomographic (CT) images. The feature image in this investigation is the gray-level co-occurrence matrix (GLCM). For each volumetric polyp, there are 13 GLCMs, computed from each of the 13 directions through the polyp volume. For comparison purpose, the CNN learning is also applied to the multi-slice CT images of the volumetric polyps. The comparison study is further extended to include Random Forest (RF) classification of the Haralick texture features (derived from the GLCMs). From the relatively small database, this study achieved scores of 0.91/0.93 (two-fold/leave-one-out evaluations) AUC (area under curve of the receiver operating characteristics) by using the CNN on the GLCMs, while the RF reached 0.84/0.86 AUC on the Haralick features and the CNN rendered 0.79/0.80 AUC on the multiple-slice CT images. The presented CNN learning from the GLCMs can relieve the challenge associated with relatively small database, improve the classification performance over the CNN on the raw CT images and the RF on the Haralick features, and have the potential to perform the clinical task of differentiating malignant from benign polyps with pathological ground truth.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2019.2963177</identifier><identifier>PMID: 31899419</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Benign ; Cancer ; Classification ; Colonography, Computed Tomographic ; Colorectal cancer ; Colorectal carcinoma ; Computed tomography ; Convolution ; CT colonoscopy ; Deep learning ; Feature extraction ; GLCM ; Ground truth ; Humans ; Image classification ; image features ; Image processing ; Learning ; Lesions ; Medical imaging ; Neural networks ; Neural Networks, Computer ; Object recognition ; Polyp differentiation ; Polyps ; ROC Curve ; Solid modeling ; Three dimensional models ; Three-dimensional displays ; Two dimensional displays</subject><ispartof>IEEE transactions on medical imaging, 2020-06, Vol.39 (6), p.2013-2024</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-6a660ec76e4d93fab1cf8ef632d53af8ff30107bc8de33222d16658d111a98303</citedby><cites>FETCH-LOGICAL-c444t-6a660ec76e4d93fab1cf8ef632d53af8ff30107bc8de33222d16658d111a98303</cites><orcidid>0000-0002-0720-8598 ; 0000-0002-5440-8242 ; 0000-0001-9908-3691 ; 0000-0003-3550-8843 ; 0000-0001-6169-3478 ; 0000-0002-2321-3207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8945384$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8945384$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31899419$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Jiaxing</creatorcontrib><creatorcontrib>Gao, Yongfeng</creatorcontrib><creatorcontrib>Liang, Zhengrong</creatorcontrib><creatorcontrib>Cao, Weiguo</creatorcontrib><creatorcontrib>Pomeroy, Marc J.</creatorcontrib><creatorcontrib>Huo, Yumei</creatorcontrib><creatorcontrib>Li, Lihong</creatorcontrib><creatorcontrib>Barish, Matthew A.</creatorcontrib><creatorcontrib>Abbasi, Almas F.</creatorcontrib><creatorcontrib>Pickhardt, Perry J.</creatorcontrib><title>3D-GLCM CNN: A 3-Dimensional Gray-Level Co-Occurrence Matrix-Based CNN Model for Polyp Classification via CT Colonography</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Accurately classifying colorectal polyps, or differentiating malignant from benign ones, has a significant clinical impact on early detection and identifying optimal treatment of colorectal cancer. Convolution neural network (CNN) has shown great potential in recognizing different objects (e.g. human faces) from multiple slice (or color) images, a task similar to the polyp differentiation, given a large learning database. This study explores the potential of CNN learning from multiple slice (or feature) images to differentiate malignant from benign polyps from a relatively small database with pathological ground truth, including 32 malignant and 31 benign polyps represented by volumetric computed tomographic (CT) images. The feature image in this investigation is the gray-level co-occurrence matrix (GLCM). For each volumetric polyp, there are 13 GLCMs, computed from each of the 13 directions through the polyp volume. For comparison purpose, the CNN learning is also applied to the multi-slice CT images of the volumetric polyps. The comparison study is further extended to include Random Forest (RF) classification of the Haralick texture features (derived from the GLCMs). From the relatively small database, this study achieved scores of 0.91/0.93 (two-fold/leave-one-out evaluations) AUC (area under curve of the receiver operating characteristics) by using the CNN on the GLCMs, while the RF reached 0.84/0.86 AUC on the Haralick features and the CNN rendered 0.79/0.80 AUC on the multiple-slice CT images. The presented CNN learning from the GLCMs can relieve the challenge associated with relatively small database, improve the classification performance over the CNN on the raw CT images and the RF on the Haralick features, and have the potential to perform the clinical task of differentiating malignant from benign polyps with pathological ground truth.</description><subject>Artificial neural networks</subject><subject>Benign</subject><subject>Cancer</subject><subject>Classification</subject><subject>Colonography, Computed Tomographic</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Computed tomography</subject><subject>Convolution</subject><subject>CT colonoscopy</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>GLCM</subject><subject>Ground truth</subject><subject>Humans</subject><subject>Image classification</subject><subject>image features</subject><subject>Image processing</subject><subject>Learning</subject><subject>Lesions</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Object recognition</subject><subject>Polyp differentiation</subject><subject>Polyps</subject><subject>ROC Curve</subject><subject>Solid modeling</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Two dimensional displays</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU1vEzEURS0Eomlhj4SELLFh4-Cv8dgsKpUphEpJyyJI7CzHY7euJuNgZ6LOv8dRQgSsvHjnHj2_C8AbgqeEYPVxubiZUkzUlCrBSF0_AxNSVRLRiv98DiaY1hJhLOgZOM_5EWPCK6xegjNGpFKcqAkY2TWazZsFbG5vP8EryNB1WLs-h9ibDs6SGdHc7VwHm4jurB1Scr11cGG2KTyhzya7dh-Fi9gWyMcEv8du3MCmMzkHH6zZFhXcBQObZZF0sY_3yWwexlfghTdddq-P7wX48fXLsvmG5nezm-ZqjiznfIuEEQI7WwvHW8W8WRHrpfOC0bZixkvvGSa4XlnZOsYopS0RopItIcQoyTC7AJcH72ZYrV1rXb9NptObFNYmjTqaoP-d9OFB38edrqlQktAi-HAUpPhrcHmr1yFb13Wmd3HImjLGBKaslgV9_x_6GIdULlkojhWTFcGsUPhA2RRzTs6fliFY73vVpVe971Ufey2Rd39_4hT4U2QB3h6A4Jw7jaXiFZOc_QaM0KVy</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Tan, Jiaxing</creator><creator>Gao, Yongfeng</creator><creator>Liang, Zhengrong</creator><creator>Cao, Weiguo</creator><creator>Pomeroy, Marc J.</creator><creator>Huo, Yumei</creator><creator>Li, Lihong</creator><creator>Barish, Matthew A.</creator><creator>Abbasi, Almas F.</creator><creator>Pickhardt, Perry J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0720-8598</orcidid><orcidid>https://orcid.org/0000-0002-5440-8242</orcidid><orcidid>https://orcid.org/0000-0001-9908-3691</orcidid><orcidid>https://orcid.org/0000-0003-3550-8843</orcidid><orcidid>https://orcid.org/0000-0001-6169-3478</orcidid><orcidid>https://orcid.org/0000-0002-2321-3207</orcidid></search><sort><creationdate>20200601</creationdate><title>3D-GLCM CNN: A 3-Dimensional Gray-Level Co-Occurrence Matrix-Based CNN Model for Polyp Classification via CT Colonography</title><author>Tan, Jiaxing ; Gao, Yongfeng ; Liang, Zhengrong ; Cao, Weiguo ; Pomeroy, Marc J. ; Huo, Yumei ; Li, Lihong ; Barish, Matthew A. ; Abbasi, Almas F. ; Pickhardt, Perry J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-6a660ec76e4d93fab1cf8ef632d53af8ff30107bc8de33222d16658d111a98303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Benign</topic><topic>Cancer</topic><topic>Classification</topic><topic>Colonography, Computed Tomographic</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Computed tomography</topic><topic>Convolution</topic><topic>CT colonoscopy</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>GLCM</topic><topic>Ground truth</topic><topic>Humans</topic><topic>Image classification</topic><topic>image features</topic><topic>Image processing</topic><topic>Learning</topic><topic>Lesions</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Object recognition</topic><topic>Polyp differentiation</topic><topic>Polyps</topic><topic>ROC Curve</topic><topic>Solid modeling</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Two dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Tan, Jiaxing</creatorcontrib><creatorcontrib>Gao, Yongfeng</creatorcontrib><creatorcontrib>Liang, Zhengrong</creatorcontrib><creatorcontrib>Cao, Weiguo</creatorcontrib><creatorcontrib>Pomeroy, Marc J.</creatorcontrib><creatorcontrib>Huo, Yumei</creatorcontrib><creatorcontrib>Li, Lihong</creatorcontrib><creatorcontrib>Barish, Matthew A.</creatorcontrib><creatorcontrib>Abbasi, Almas F.</creatorcontrib><creatorcontrib>Pickhardt, Perry J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tan, Jiaxing</au><au>Gao, Yongfeng</au><au>Liang, Zhengrong</au><au>Cao, Weiguo</au><au>Pomeroy, Marc J.</au><au>Huo, Yumei</au><au>Li, Lihong</au><au>Barish, Matthew A.</au><au>Abbasi, Almas F.</au><au>Pickhardt, Perry J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D-GLCM CNN: A 3-Dimensional Gray-Level Co-Occurrence Matrix-Based CNN Model for Polyp Classification via CT Colonography</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>39</volume><issue>6</issue><spage>2013</spage><epage>2024</epage><pages>2013-2024</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Accurately classifying colorectal polyps, or differentiating malignant from benign ones, has a significant clinical impact on early detection and identifying optimal treatment of colorectal cancer. Convolution neural network (CNN) has shown great potential in recognizing different objects (e.g. human faces) from multiple slice (or color) images, a task similar to the polyp differentiation, given a large learning database. This study explores the potential of CNN learning from multiple slice (or feature) images to differentiate malignant from benign polyps from a relatively small database with pathological ground truth, including 32 malignant and 31 benign polyps represented by volumetric computed tomographic (CT) images. The feature image in this investigation is the gray-level co-occurrence matrix (GLCM). For each volumetric polyp, there are 13 GLCMs, computed from each of the 13 directions through the polyp volume. For comparison purpose, the CNN learning is also applied to the multi-slice CT images of the volumetric polyps. The comparison study is further extended to include Random Forest (RF) classification of the Haralick texture features (derived from the GLCMs). From the relatively small database, this study achieved scores of 0.91/0.93 (two-fold/leave-one-out evaluations) AUC (area under curve of the receiver operating characteristics) by using the CNN on the GLCMs, while the RF reached 0.84/0.86 AUC on the Haralick features and the CNN rendered 0.79/0.80 AUC on the multiple-slice CT images. The presented CNN learning from the GLCMs can relieve the challenge associated with relatively small database, improve the classification performance over the CNN on the raw CT images and the RF on the Haralick features, and have the potential to perform the clinical task of differentiating malignant from benign polyps with pathological ground truth.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31899419</pmid><doi>10.1109/TMI.2019.2963177</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0720-8598</orcidid><orcidid>https://orcid.org/0000-0002-5440-8242</orcidid><orcidid>https://orcid.org/0000-0001-9908-3691</orcidid><orcidid>https://orcid.org/0000-0003-3550-8843</orcidid><orcidid>https://orcid.org/0000-0001-6169-3478</orcidid><orcidid>https://orcid.org/0000-0002-2321-3207</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2020-06, Vol.39 (6), p.2013-2024
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_journals_2409385103
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Benign
Cancer
Classification
Colonography, Computed Tomographic
Colorectal cancer
Colorectal carcinoma
Computed tomography
Convolution
CT colonoscopy
Deep learning
Feature extraction
GLCM
Ground truth
Humans
Image classification
image features
Image processing
Learning
Lesions
Medical imaging
Neural networks
Neural Networks, Computer
Object recognition
Polyp differentiation
Polyps
ROC Curve
Solid modeling
Three dimensional models
Three-dimensional displays
Two dimensional displays
title 3D-GLCM CNN: A 3-Dimensional Gray-Level Co-Occurrence Matrix-Based CNN Model for Polyp Classification via CT Colonography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D-GLCM%20CNN:%20A%203-Dimensional%20Gray-Level%20Co-Occurrence%20Matrix-Based%20CNN%20Model%20for%20Polyp%20Classification%20via%20CT%20Colonography&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Tan,%20Jiaxing&rft.date=2020-06-01&rft.volume=39&rft.issue=6&rft.spage=2013&rft.epage=2024&rft.pages=2013-2024&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2019.2963177&rft_dat=%3Cproquest_RIE%3E2333602378%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409385103&rft_id=info:pmid/31899419&rft_ieee_id=8945384&rfr_iscdi=true