3D-GLCM CNN: A 3-Dimensional Gray-Level Co-Occurrence Matrix-Based CNN Model for Polyp Classification via CT Colonography
Accurately classifying colorectal polyps, or differentiating malignant from benign ones, has a significant clinical impact on early detection and identifying optimal treatment of colorectal cancer. Convolution neural network (CNN) has shown great potential in recognizing different objects (e.g. huma...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2020-06, Vol.39 (6), p.2013-2024 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2024 |
---|---|
container_issue | 6 |
container_start_page | 2013 |
container_title | IEEE transactions on medical imaging |
container_volume | 39 |
creator | Tan, Jiaxing Gao, Yongfeng Liang, Zhengrong Cao, Weiguo Pomeroy, Marc J. Huo, Yumei Li, Lihong Barish, Matthew A. Abbasi, Almas F. Pickhardt, Perry J. |
description | Accurately classifying colorectal polyps, or differentiating malignant from benign ones, has a significant clinical impact on early detection and identifying optimal treatment of colorectal cancer. Convolution neural network (CNN) has shown great potential in recognizing different objects (e.g. human faces) from multiple slice (or color) images, a task similar to the polyp differentiation, given a large learning database. This study explores the potential of CNN learning from multiple slice (or feature) images to differentiate malignant from benign polyps from a relatively small database with pathological ground truth, including 32 malignant and 31 benign polyps represented by volumetric computed tomographic (CT) images. The feature image in this investigation is the gray-level co-occurrence matrix (GLCM). For each volumetric polyp, there are 13 GLCMs, computed from each of the 13 directions through the polyp volume. For comparison purpose, the CNN learning is also applied to the multi-slice CT images of the volumetric polyps. The comparison study is further extended to include Random Forest (RF) classification of the Haralick texture features (derived from the GLCMs). From the relatively small database, this study achieved scores of 0.91/0.93 (two-fold/leave-one-out evaluations) AUC (area under curve of the receiver operating characteristics) by using the CNN on the GLCMs, while the RF reached 0.84/0.86 AUC on the Haralick features and the CNN rendered 0.79/0.80 AUC on the multiple-slice CT images. The presented CNN learning from the GLCMs can relieve the challenge associated with relatively small database, improve the classification performance over the CNN on the raw CT images and the RF on the Haralick features, and have the potential to perform the clinical task of differentiating malignant from benign polyps with pathological ground truth. |
doi_str_mv | 10.1109/TMI.2019.2963177 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2409385103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8945384</ieee_id><sourcerecordid>2333602378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-6a660ec76e4d93fab1cf8ef632d53af8ff30107bc8de33222d16658d111a98303</originalsourceid><addsrcrecordid>eNpdkU1vEzEURS0Eomlhj4SELLFh4-Cv8dgsKpUphEpJyyJI7CzHY7euJuNgZ6LOv8dRQgSsvHjnHj2_C8AbgqeEYPVxubiZUkzUlCrBSF0_AxNSVRLRiv98DiaY1hJhLOgZOM_5EWPCK6xegjNGpFKcqAkY2TWazZsFbG5vP8EryNB1WLs-h9ibDs6SGdHc7VwHm4jurB1Scr11cGG2KTyhzya7dh-Fi9gWyMcEv8du3MCmMzkHH6zZFhXcBQObZZF0sY_3yWwexlfghTdddq-P7wX48fXLsvmG5nezm-ZqjiznfIuEEQI7WwvHW8W8WRHrpfOC0bZixkvvGSa4XlnZOsYopS0RopItIcQoyTC7AJcH72ZYrV1rXb9NptObFNYmjTqaoP-d9OFB38edrqlQktAi-HAUpPhrcHmr1yFb13Wmd3HImjLGBKaslgV9_x_6GIdULlkojhWTFcGsUPhA2RRzTs6fliFY73vVpVe971Ufey2Rd39_4hT4U2QB3h6A4Jw7jaXiFZOc_QaM0KVy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409385103</pqid></control><display><type>article</type><title>3D-GLCM CNN: A 3-Dimensional Gray-Level Co-Occurrence Matrix-Based CNN Model for Polyp Classification via CT Colonography</title><source>IEEE Electronic Library (IEL)</source><creator>Tan, Jiaxing ; Gao, Yongfeng ; Liang, Zhengrong ; Cao, Weiguo ; Pomeroy, Marc J. ; Huo, Yumei ; Li, Lihong ; Barish, Matthew A. ; Abbasi, Almas F. ; Pickhardt, Perry J.</creator><creatorcontrib>Tan, Jiaxing ; Gao, Yongfeng ; Liang, Zhengrong ; Cao, Weiguo ; Pomeroy, Marc J. ; Huo, Yumei ; Li, Lihong ; Barish, Matthew A. ; Abbasi, Almas F. ; Pickhardt, Perry J.</creatorcontrib><description>Accurately classifying colorectal polyps, or differentiating malignant from benign ones, has a significant clinical impact on early detection and identifying optimal treatment of colorectal cancer. Convolution neural network (CNN) has shown great potential in recognizing different objects (e.g. human faces) from multiple slice (or color) images, a task similar to the polyp differentiation, given a large learning database. This study explores the potential of CNN learning from multiple slice (or feature) images to differentiate malignant from benign polyps from a relatively small database with pathological ground truth, including 32 malignant and 31 benign polyps represented by volumetric computed tomographic (CT) images. The feature image in this investigation is the gray-level co-occurrence matrix (GLCM). For each volumetric polyp, there are 13 GLCMs, computed from each of the 13 directions through the polyp volume. For comparison purpose, the CNN learning is also applied to the multi-slice CT images of the volumetric polyps. The comparison study is further extended to include Random Forest (RF) classification of the Haralick texture features (derived from the GLCMs). From the relatively small database, this study achieved scores of 0.91/0.93 (two-fold/leave-one-out evaluations) AUC (area under curve of the receiver operating characteristics) by using the CNN on the GLCMs, while the RF reached 0.84/0.86 AUC on the Haralick features and the CNN rendered 0.79/0.80 AUC on the multiple-slice CT images. The presented CNN learning from the GLCMs can relieve the challenge associated with relatively small database, improve the classification performance over the CNN on the raw CT images and the RF on the Haralick features, and have the potential to perform the clinical task of differentiating malignant from benign polyps with pathological ground truth.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2019.2963177</identifier><identifier>PMID: 31899419</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Benign ; Cancer ; Classification ; Colonography, Computed Tomographic ; Colorectal cancer ; Colorectal carcinoma ; Computed tomography ; Convolution ; CT colonoscopy ; Deep learning ; Feature extraction ; GLCM ; Ground truth ; Humans ; Image classification ; image features ; Image processing ; Learning ; Lesions ; Medical imaging ; Neural networks ; Neural Networks, Computer ; Object recognition ; Polyp differentiation ; Polyps ; ROC Curve ; Solid modeling ; Three dimensional models ; Three-dimensional displays ; Two dimensional displays</subject><ispartof>IEEE transactions on medical imaging, 2020-06, Vol.39 (6), p.2013-2024</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-6a660ec76e4d93fab1cf8ef632d53af8ff30107bc8de33222d16658d111a98303</citedby><cites>FETCH-LOGICAL-c444t-6a660ec76e4d93fab1cf8ef632d53af8ff30107bc8de33222d16658d111a98303</cites><orcidid>0000-0002-0720-8598 ; 0000-0002-5440-8242 ; 0000-0001-9908-3691 ; 0000-0003-3550-8843 ; 0000-0001-6169-3478 ; 0000-0002-2321-3207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8945384$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8945384$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31899419$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Jiaxing</creatorcontrib><creatorcontrib>Gao, Yongfeng</creatorcontrib><creatorcontrib>Liang, Zhengrong</creatorcontrib><creatorcontrib>Cao, Weiguo</creatorcontrib><creatorcontrib>Pomeroy, Marc J.</creatorcontrib><creatorcontrib>Huo, Yumei</creatorcontrib><creatorcontrib>Li, Lihong</creatorcontrib><creatorcontrib>Barish, Matthew A.</creatorcontrib><creatorcontrib>Abbasi, Almas F.</creatorcontrib><creatorcontrib>Pickhardt, Perry J.</creatorcontrib><title>3D-GLCM CNN: A 3-Dimensional Gray-Level Co-Occurrence Matrix-Based CNN Model for Polyp Classification via CT Colonography</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Accurately classifying colorectal polyps, or differentiating malignant from benign ones, has a significant clinical impact on early detection and identifying optimal treatment of colorectal cancer. Convolution neural network (CNN) has shown great potential in recognizing different objects (e.g. human faces) from multiple slice (or color) images, a task similar to the polyp differentiation, given a large learning database. This study explores the potential of CNN learning from multiple slice (or feature) images to differentiate malignant from benign polyps from a relatively small database with pathological ground truth, including 32 malignant and 31 benign polyps represented by volumetric computed tomographic (CT) images. The feature image in this investigation is the gray-level co-occurrence matrix (GLCM). For each volumetric polyp, there are 13 GLCMs, computed from each of the 13 directions through the polyp volume. For comparison purpose, the CNN learning is also applied to the multi-slice CT images of the volumetric polyps. The comparison study is further extended to include Random Forest (RF) classification of the Haralick texture features (derived from the GLCMs). From the relatively small database, this study achieved scores of 0.91/0.93 (two-fold/leave-one-out evaluations) AUC (area under curve of the receiver operating characteristics) by using the CNN on the GLCMs, while the RF reached 0.84/0.86 AUC on the Haralick features and the CNN rendered 0.79/0.80 AUC on the multiple-slice CT images. The presented CNN learning from the GLCMs can relieve the challenge associated with relatively small database, improve the classification performance over the CNN on the raw CT images and the RF on the Haralick features, and have the potential to perform the clinical task of differentiating malignant from benign polyps with pathological ground truth.</description><subject>Artificial neural networks</subject><subject>Benign</subject><subject>Cancer</subject><subject>Classification</subject><subject>Colonography, Computed Tomographic</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Computed tomography</subject><subject>Convolution</subject><subject>CT colonoscopy</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>GLCM</subject><subject>Ground truth</subject><subject>Humans</subject><subject>Image classification</subject><subject>image features</subject><subject>Image processing</subject><subject>Learning</subject><subject>Lesions</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Object recognition</subject><subject>Polyp differentiation</subject><subject>Polyps</subject><subject>ROC Curve</subject><subject>Solid modeling</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Two dimensional displays</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU1vEzEURS0Eomlhj4SELLFh4-Cv8dgsKpUphEpJyyJI7CzHY7euJuNgZ6LOv8dRQgSsvHjnHj2_C8AbgqeEYPVxubiZUkzUlCrBSF0_AxNSVRLRiv98DiaY1hJhLOgZOM_5EWPCK6xegjNGpFKcqAkY2TWazZsFbG5vP8EryNB1WLs-h9ibDs6SGdHc7VwHm4jurB1Scr11cGG2KTyhzya7dh-Fi9gWyMcEv8du3MCmMzkHH6zZFhXcBQObZZF0sY_3yWwexlfghTdddq-P7wX48fXLsvmG5nezm-ZqjiznfIuEEQI7WwvHW8W8WRHrpfOC0bZixkvvGSa4XlnZOsYopS0RopItIcQoyTC7AJcH72ZYrV1rXb9NptObFNYmjTqaoP-d9OFB38edrqlQktAi-HAUpPhrcHmr1yFb13Wmd3HImjLGBKaslgV9_x_6GIdULlkojhWTFcGsUPhA2RRzTs6fliFY73vVpVe971Ufey2Rd39_4hT4U2QB3h6A4Jw7jaXiFZOc_QaM0KVy</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Tan, Jiaxing</creator><creator>Gao, Yongfeng</creator><creator>Liang, Zhengrong</creator><creator>Cao, Weiguo</creator><creator>Pomeroy, Marc J.</creator><creator>Huo, Yumei</creator><creator>Li, Lihong</creator><creator>Barish, Matthew A.</creator><creator>Abbasi, Almas F.</creator><creator>Pickhardt, Perry J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0720-8598</orcidid><orcidid>https://orcid.org/0000-0002-5440-8242</orcidid><orcidid>https://orcid.org/0000-0001-9908-3691</orcidid><orcidid>https://orcid.org/0000-0003-3550-8843</orcidid><orcidid>https://orcid.org/0000-0001-6169-3478</orcidid><orcidid>https://orcid.org/0000-0002-2321-3207</orcidid></search><sort><creationdate>20200601</creationdate><title>3D-GLCM CNN: A 3-Dimensional Gray-Level Co-Occurrence Matrix-Based CNN Model for Polyp Classification via CT Colonography</title><author>Tan, Jiaxing ; Gao, Yongfeng ; Liang, Zhengrong ; Cao, Weiguo ; Pomeroy, Marc J. ; Huo, Yumei ; Li, Lihong ; Barish, Matthew A. ; Abbasi, Almas F. ; Pickhardt, Perry J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-6a660ec76e4d93fab1cf8ef632d53af8ff30107bc8de33222d16658d111a98303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Benign</topic><topic>Cancer</topic><topic>Classification</topic><topic>Colonography, Computed Tomographic</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Computed tomography</topic><topic>Convolution</topic><topic>CT colonoscopy</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>GLCM</topic><topic>Ground truth</topic><topic>Humans</topic><topic>Image classification</topic><topic>image features</topic><topic>Image processing</topic><topic>Learning</topic><topic>Lesions</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Object recognition</topic><topic>Polyp differentiation</topic><topic>Polyps</topic><topic>ROC Curve</topic><topic>Solid modeling</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Two dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Tan, Jiaxing</creatorcontrib><creatorcontrib>Gao, Yongfeng</creatorcontrib><creatorcontrib>Liang, Zhengrong</creatorcontrib><creatorcontrib>Cao, Weiguo</creatorcontrib><creatorcontrib>Pomeroy, Marc J.</creatorcontrib><creatorcontrib>Huo, Yumei</creatorcontrib><creatorcontrib>Li, Lihong</creatorcontrib><creatorcontrib>Barish, Matthew A.</creatorcontrib><creatorcontrib>Abbasi, Almas F.</creatorcontrib><creatorcontrib>Pickhardt, Perry J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tan, Jiaxing</au><au>Gao, Yongfeng</au><au>Liang, Zhengrong</au><au>Cao, Weiguo</au><au>Pomeroy, Marc J.</au><au>Huo, Yumei</au><au>Li, Lihong</au><au>Barish, Matthew A.</au><au>Abbasi, Almas F.</au><au>Pickhardt, Perry J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D-GLCM CNN: A 3-Dimensional Gray-Level Co-Occurrence Matrix-Based CNN Model for Polyp Classification via CT Colonography</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>39</volume><issue>6</issue><spage>2013</spage><epage>2024</epage><pages>2013-2024</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Accurately classifying colorectal polyps, or differentiating malignant from benign ones, has a significant clinical impact on early detection and identifying optimal treatment of colorectal cancer. Convolution neural network (CNN) has shown great potential in recognizing different objects (e.g. human faces) from multiple slice (or color) images, a task similar to the polyp differentiation, given a large learning database. This study explores the potential of CNN learning from multiple slice (or feature) images to differentiate malignant from benign polyps from a relatively small database with pathological ground truth, including 32 malignant and 31 benign polyps represented by volumetric computed tomographic (CT) images. The feature image in this investigation is the gray-level co-occurrence matrix (GLCM). For each volumetric polyp, there are 13 GLCMs, computed from each of the 13 directions through the polyp volume. For comparison purpose, the CNN learning is also applied to the multi-slice CT images of the volumetric polyps. The comparison study is further extended to include Random Forest (RF) classification of the Haralick texture features (derived from the GLCMs). From the relatively small database, this study achieved scores of 0.91/0.93 (two-fold/leave-one-out evaluations) AUC (area under curve of the receiver operating characteristics) by using the CNN on the GLCMs, while the RF reached 0.84/0.86 AUC on the Haralick features and the CNN rendered 0.79/0.80 AUC on the multiple-slice CT images. The presented CNN learning from the GLCMs can relieve the challenge associated with relatively small database, improve the classification performance over the CNN on the raw CT images and the RF on the Haralick features, and have the potential to perform the clinical task of differentiating malignant from benign polyps with pathological ground truth.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31899419</pmid><doi>10.1109/TMI.2019.2963177</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0720-8598</orcidid><orcidid>https://orcid.org/0000-0002-5440-8242</orcidid><orcidid>https://orcid.org/0000-0001-9908-3691</orcidid><orcidid>https://orcid.org/0000-0003-3550-8843</orcidid><orcidid>https://orcid.org/0000-0001-6169-3478</orcidid><orcidid>https://orcid.org/0000-0002-2321-3207</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2020-06, Vol.39 (6), p.2013-2024 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_journals_2409385103 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Benign Cancer Classification Colonography, Computed Tomographic Colorectal cancer Colorectal carcinoma Computed tomography Convolution CT colonoscopy Deep learning Feature extraction GLCM Ground truth Humans Image classification image features Image processing Learning Lesions Medical imaging Neural networks Neural Networks, Computer Object recognition Polyp differentiation Polyps ROC Curve Solid modeling Three dimensional models Three-dimensional displays Two dimensional displays |
title | 3D-GLCM CNN: A 3-Dimensional Gray-Level Co-Occurrence Matrix-Based CNN Model for Polyp Classification via CT Colonography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D-GLCM%20CNN:%20A%203-Dimensional%20Gray-Level%20Co-Occurrence%20Matrix-Based%20CNN%20Model%20for%20Polyp%20Classification%20via%20CT%20Colonography&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Tan,%20Jiaxing&rft.date=2020-06-01&rft.volume=39&rft.issue=6&rft.spage=2013&rft.epage=2024&rft.pages=2013-2024&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2019.2963177&rft_dat=%3Cproquest_RIE%3E2333602378%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409385103&rft_id=info:pmid/31899419&rft_ieee_id=8945384&rfr_iscdi=true |