Dynamic Resource Provisioning With Fault Tolerance for Data-Intensive Meteorological Workflows in Cloud

Cloud computing is a formidable paradigm to provide resources for handling the services from Industrial Internet of Things (IIoT), such as meteorological industry. Generally, the meteorological services, with complex interdependent logics, are modeled as workflows. When any of the computing nodes fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2020-09, Vol.16 (9), p.6172-6181
Hauptverfasser: Xu, Xiaolong, Mo, Ruichao, Dai, Fei, Lin, Wenmin, Wan, Shaohua, Dou, Wanchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6181
container_issue 9
container_start_page 6172
container_title IEEE transactions on industrial informatics
container_volume 16
creator Xu, Xiaolong
Mo, Ruichao
Dai, Fei
Lin, Wenmin
Wan, Shaohua
Dou, Wanchun
description Cloud computing is a formidable paradigm to provide resources for handling the services from Industrial Internet of Things (IIoT), such as meteorological industry. Generally, the meteorological services, with complex interdependent logics, are modeled as workflows. When any of the computing nodes for hosting the meteorological workflows fail, all sorts of consequences (e.g., data loss, makespan enlargement, performance degradation, etc.) could arise. Thus recovering the failed tasks as well as optimizing the makespan and the load balance of the computing nodes is still a critical challenge. To address this challenge, a dynamic resource provisioning method (DRPM) with fault tolerance for the data-intensive meteorological workflows is proposed in this article. Technically, the Virtual Layer 2 (VL2) network topology is exploited to build meteorological cloud infrastructure. Then, the nondominated sorting genetic algorithm II (NSGA-II) is employed to minimize the makespan and improve the load balance. Finally, comprehensive experimental analysis of DRPM are proceeded.
doi_str_mv 10.1109/TII.2019.2959258
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2409384810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8931005</ieee_id><sourcerecordid>2409384810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-ef3083cc3c9cca65104605b5d64d2b686d79e7f72b5eead5f5d5bc56933371cb3</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4soOKd3wUvAc-dL0rTNUTang4kikx1Dmr7OzK6ZSTvZf2_Hhqf3Dt_v93hfFN1SGFEK8mExm40YUDliUkgm8rNoQGVCYwAB5_0uBI05A34ZXYWwBuAZcDmIVpN9ozfWkA8MrvMGybt3Oxusa2yzIkvbfpGp7uqWLFyNXjc9UTlPJrrV8axpsQl2h-QVW3Te1W5lja7J0vnvqna_gdiGjGvXldfRRaXrgDenOYw-p0-L8Us8f3uejR_nsWGStjFWHHJuDDfSGJ0KCkkKohBlmpSsSPO0zCRmVcYKgahLUYlSFEakknOeUVPwYXR_7N1699NhaNW6f6vpTyqWgOR5klPoKThSxrsQPFZq6-1G-72ioA46Va9THXSqk84-cneMWET8x3PJaW-Y_wFx-3IT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409384810</pqid></control><display><type>article</type><title>Dynamic Resource Provisioning With Fault Tolerance for Data-Intensive Meteorological Workflows in Cloud</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Xiaolong ; Mo, Ruichao ; Dai, Fei ; Lin, Wenmin ; Wan, Shaohua ; Dou, Wanchun</creator><creatorcontrib>Xu, Xiaolong ; Mo, Ruichao ; Dai, Fei ; Lin, Wenmin ; Wan, Shaohua ; Dou, Wanchun</creatorcontrib><description>Cloud computing is a formidable paradigm to provide resources for handling the services from Industrial Internet of Things (IIoT), such as meteorological industry. Generally, the meteorological services, with complex interdependent logics, are modeled as workflows. When any of the computing nodes for hosting the meteorological workflows fail, all sorts of consequences (e.g., data loss, makespan enlargement, performance degradation, etc.) could arise. Thus recovering the failed tasks as well as optimizing the makespan and the load balance of the computing nodes is still a critical challenge. To address this challenge, a dynamic resource provisioning method (DRPM) with fault tolerance for the data-intensive meteorological workflows is proposed in this article. Technically, the Virtual Layer 2 (VL2) network topology is exploited to build meteorological cloud infrastructure. Then, the nondominated sorting genetic algorithm II (NSGA-II) is employed to minimize the makespan and improve the load balance. Finally, comprehensive experimental analysis of DRPM are proceeded.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2019.2959258</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cloud computing ; Computational modeling ; Data loss ; Dynamic scheduling ; Enlargement ; Fault tolerance ; Fault tolerant systems ; Genetic algorithms ; Industrial applications ; Internet of Things ; Load balancing ; Meteorological services ; meteorological workflow ; Mirrors ; Network topologies ; Nodes ; nondominated sorting genetic algorithm (NSGA)-II ; Performance degradation ; Provisioning ; Resource allocation ; Sorting algorithms ; Task analysis</subject><ispartof>IEEE transactions on industrial informatics, 2020-09, Vol.16 (9), p.6172-6181</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-ef3083cc3c9cca65104605b5d64d2b686d79e7f72b5eead5f5d5bc56933371cb3</citedby><cites>FETCH-LOGICAL-c291t-ef3083cc3c9cca65104605b5d64d2b686d79e7f72b5eead5f5d5bc56933371cb3</cites><orcidid>0000-0001-6469-357X ; 0000-0003-4879-9803 ; 0000-0001-7013-9081 ; 0000-0003-3402-3182 ; 0000-0003-4833-2023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8931005$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8931005$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Xiaolong</creatorcontrib><creatorcontrib>Mo, Ruichao</creatorcontrib><creatorcontrib>Dai, Fei</creatorcontrib><creatorcontrib>Lin, Wenmin</creatorcontrib><creatorcontrib>Wan, Shaohua</creatorcontrib><creatorcontrib>Dou, Wanchun</creatorcontrib><title>Dynamic Resource Provisioning With Fault Tolerance for Data-Intensive Meteorological Workflows in Cloud</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Cloud computing is a formidable paradigm to provide resources for handling the services from Industrial Internet of Things (IIoT), such as meteorological industry. Generally, the meteorological services, with complex interdependent logics, are modeled as workflows. When any of the computing nodes for hosting the meteorological workflows fail, all sorts of consequences (e.g., data loss, makespan enlargement, performance degradation, etc.) could arise. Thus recovering the failed tasks as well as optimizing the makespan and the load balance of the computing nodes is still a critical challenge. To address this challenge, a dynamic resource provisioning method (DRPM) with fault tolerance for the data-intensive meteorological workflows is proposed in this article. Technically, the Virtual Layer 2 (VL2) network topology is exploited to build meteorological cloud infrastructure. Then, the nondominated sorting genetic algorithm II (NSGA-II) is employed to minimize the makespan and improve the load balance. Finally, comprehensive experimental analysis of DRPM are proceeded.</description><subject>Cloud computing</subject><subject>Computational modeling</subject><subject>Data loss</subject><subject>Dynamic scheduling</subject><subject>Enlargement</subject><subject>Fault tolerance</subject><subject>Fault tolerant systems</subject><subject>Genetic algorithms</subject><subject>Industrial applications</subject><subject>Internet of Things</subject><subject>Load balancing</subject><subject>Meteorological services</subject><subject>meteorological workflow</subject><subject>Mirrors</subject><subject>Network topologies</subject><subject>Nodes</subject><subject>nondominated sorting genetic algorithm (NSGA)-II</subject><subject>Performance degradation</subject><subject>Provisioning</subject><subject>Resource allocation</subject><subject>Sorting algorithms</subject><subject>Task analysis</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4soOKd3wUvAc-dL0rTNUTang4kikx1Dmr7OzK6ZSTvZf2_Hhqf3Dt_v93hfFN1SGFEK8mExm40YUDliUkgm8rNoQGVCYwAB5_0uBI05A34ZXYWwBuAZcDmIVpN9ozfWkA8MrvMGybt3Oxusa2yzIkvbfpGp7uqWLFyNXjc9UTlPJrrV8axpsQl2h-QVW3Te1W5lja7J0vnvqna_gdiGjGvXldfRRaXrgDenOYw-p0-L8Us8f3uejR_nsWGStjFWHHJuDDfSGJ0KCkkKohBlmpSsSPO0zCRmVcYKgahLUYlSFEakknOeUVPwYXR_7N1699NhaNW6f6vpTyqWgOR5klPoKThSxrsQPFZq6-1G-72ioA46Va9THXSqk84-cneMWET8x3PJaW-Y_wFx-3IT</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Xu, Xiaolong</creator><creator>Mo, Ruichao</creator><creator>Dai, Fei</creator><creator>Lin, Wenmin</creator><creator>Wan, Shaohua</creator><creator>Dou, Wanchun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6469-357X</orcidid><orcidid>https://orcid.org/0000-0003-4879-9803</orcidid><orcidid>https://orcid.org/0000-0001-7013-9081</orcidid><orcidid>https://orcid.org/0000-0003-3402-3182</orcidid><orcidid>https://orcid.org/0000-0003-4833-2023</orcidid></search><sort><creationdate>20200901</creationdate><title>Dynamic Resource Provisioning With Fault Tolerance for Data-Intensive Meteorological Workflows in Cloud</title><author>Xu, Xiaolong ; Mo, Ruichao ; Dai, Fei ; Lin, Wenmin ; Wan, Shaohua ; Dou, Wanchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-ef3083cc3c9cca65104605b5d64d2b686d79e7f72b5eead5f5d5bc56933371cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cloud computing</topic><topic>Computational modeling</topic><topic>Data loss</topic><topic>Dynamic scheduling</topic><topic>Enlargement</topic><topic>Fault tolerance</topic><topic>Fault tolerant systems</topic><topic>Genetic algorithms</topic><topic>Industrial applications</topic><topic>Internet of Things</topic><topic>Load balancing</topic><topic>Meteorological services</topic><topic>meteorological workflow</topic><topic>Mirrors</topic><topic>Network topologies</topic><topic>Nodes</topic><topic>nondominated sorting genetic algorithm (NSGA)-II</topic><topic>Performance degradation</topic><topic>Provisioning</topic><topic>Resource allocation</topic><topic>Sorting algorithms</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiaolong</creatorcontrib><creatorcontrib>Mo, Ruichao</creatorcontrib><creatorcontrib>Dai, Fei</creatorcontrib><creatorcontrib>Lin, Wenmin</creatorcontrib><creatorcontrib>Wan, Shaohua</creatorcontrib><creatorcontrib>Dou, Wanchun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Xiaolong</au><au>Mo, Ruichao</au><au>Dai, Fei</au><au>Lin, Wenmin</au><au>Wan, Shaohua</au><au>Dou, Wanchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Resource Provisioning With Fault Tolerance for Data-Intensive Meteorological Workflows in Cloud</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>16</volume><issue>9</issue><spage>6172</spage><epage>6181</epage><pages>6172-6181</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Cloud computing is a formidable paradigm to provide resources for handling the services from Industrial Internet of Things (IIoT), such as meteorological industry. Generally, the meteorological services, with complex interdependent logics, are modeled as workflows. When any of the computing nodes for hosting the meteorological workflows fail, all sorts of consequences (e.g., data loss, makespan enlargement, performance degradation, etc.) could arise. Thus recovering the failed tasks as well as optimizing the makespan and the load balance of the computing nodes is still a critical challenge. To address this challenge, a dynamic resource provisioning method (DRPM) with fault tolerance for the data-intensive meteorological workflows is proposed in this article. Technically, the Virtual Layer 2 (VL2) network topology is exploited to build meteorological cloud infrastructure. Then, the nondominated sorting genetic algorithm II (NSGA-II) is employed to minimize the makespan and improve the load balance. Finally, comprehensive experimental analysis of DRPM are proceeded.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2019.2959258</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6469-357X</orcidid><orcidid>https://orcid.org/0000-0003-4879-9803</orcidid><orcidid>https://orcid.org/0000-0001-7013-9081</orcidid><orcidid>https://orcid.org/0000-0003-3402-3182</orcidid><orcidid>https://orcid.org/0000-0003-4833-2023</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2020-09, Vol.16 (9), p.6172-6181
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_2409384810
source IEEE Electronic Library (IEL)
subjects Cloud computing
Computational modeling
Data loss
Dynamic scheduling
Enlargement
Fault tolerance
Fault tolerant systems
Genetic algorithms
Industrial applications
Internet of Things
Load balancing
Meteorological services
meteorological workflow
Mirrors
Network topologies
Nodes
nondominated sorting genetic algorithm (NSGA)-II
Performance degradation
Provisioning
Resource allocation
Sorting algorithms
Task analysis
title Dynamic Resource Provisioning With Fault Tolerance for Data-Intensive Meteorological Workflows in Cloud
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A08%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Resource%20Provisioning%20With%20Fault%20Tolerance%20for%20Data-Intensive%20Meteorological%20Workflows%20in%20Cloud&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Xu,%20Xiaolong&rft.date=2020-09-01&rft.volume=16&rft.issue=9&rft.spage=6172&rft.epage=6181&rft.pages=6172-6181&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2019.2959258&rft_dat=%3Cproquest_RIE%3E2409384810%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409384810&rft_id=info:pmid/&rft_ieee_id=8931005&rfr_iscdi=true