Attention by Selection: A Deep Selective Attention Approach to Breast Cancer Classification

Deep learning approaches are widely applied to histopathological image analysis due to the impressive levels of performance achieved. However, when dealing with high-resolution histopathological images, utilizing the original image as input to the deep learning model is computationally expensive, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2020-06, Vol.39 (6), p.1930-1941
Hauptverfasser: Xu, Bolei, Liu, Jingxin, Hou, Xianxu, Liu, Bozhi, Garibaldi, Jon, Ellis, Ian O., Green, Andy, Shen, Linlin, Qiu, Guoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1941
container_issue 6
container_start_page 1930
container_title IEEE transactions on medical imaging
container_volume 39
creator Xu, Bolei
Liu, Jingxin
Hou, Xianxu
Liu, Bozhi
Garibaldi, Jon
Ellis, Ian O.
Green, Andy
Shen, Linlin
Qiu, Guoping
description Deep learning approaches are widely applied to histopathological image analysis due to the impressive levels of performance achieved. However, when dealing with high-resolution histopathological images, utilizing the original image as input to the deep learning model is computationally expensive, while resizing the original image to achieve low resolution incurs information loss. Some hard-attention based approaches have emerged to select possible lesion regions from images to avoid processing the original image. However, these hard-attention based approaches usually take a long time to converge with weak guidance, and valueless patches may be trained by the classifier. To overcome this problem, we propose a deep selective attention approach that aims to select valuable regions in the original images for classification. In our approach, a decision network is developed to decide where to crop and whether the cropped patch is necessary for classification. These selected patches are then trained by the classification network, which then provides feedback to the decision network to update its selection policy. With such a co-evolution training strategy, we show that our approach can achieve a fast convergence rate and high classification accuracy. Our approach is evaluated on a public breast cancer histopathological image database, where it demonstrates superior performance compared to state-of-the-art deep learning approaches, achieving approximately 98% classification accuracy while only taking 50% of the training time of the previous hard-attention approach.
doi_str_mv 10.1109/TMI.2019.2962013
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2409384775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8941117</ieee_id><sourcerecordid>2409384775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-6e08c10fa78f3fd486dc8caa375cf4e6bc17805603436c920c096efe65e2d6413</originalsourceid><addsrcrecordid>eNpdkMtLw0AQhxdRtD7ugiALXrykzr53vdX6BMWDCoKHZbudYCRNajYV-t-b0KrgaZiZb4YfHyGHDIaMgTt7frgbcmBuyJ3uqtggA6aUzbiSr5tkANzYDEDzHbKb0gcAkwrcNtkRzFpQUg3I26htsWqLuqKTJX3CEmPfnNMRvUSc_0y-kP6Bo_m8qUN8p21NLxoMqaXjUEVs6LgMKRV5EUMP7pOtPJQJD9Z1j7xcXz2Pb7P7x5u78eg-i0KaNtMINjLIg7G5yKfS6mm0MQRhVMwl6klkpkurQUiho-MQwWnMUSvkUy2Z2COnq79drM8FptbPihSxLEOF9SJ5LgTj0hnXoyf_0I960VRdOs8lOGGlMaqjYEXFpk6pwdzPm2IWmqVn4HvxvhPve_F-Lb47OV4_XkxmOP09-DHdAUcroEDE37V1kjFmxDfGYIXI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409384775</pqid></control><display><type>article</type><title>Attention by Selection: A Deep Selective Attention Approach to Breast Cancer Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Bolei ; Liu, Jingxin ; Hou, Xianxu ; Liu, Bozhi ; Garibaldi, Jon ; Ellis, Ian O. ; Green, Andy ; Shen, Linlin ; Qiu, Guoping</creator><creatorcontrib>Xu, Bolei ; Liu, Jingxin ; Hou, Xianxu ; Liu, Bozhi ; Garibaldi, Jon ; Ellis, Ian O. ; Green, Andy ; Shen, Linlin ; Qiu, Guoping</creatorcontrib><description>Deep learning approaches are widely applied to histopathological image analysis due to the impressive levels of performance achieved. However, when dealing with high-resolution histopathological images, utilizing the original image as input to the deep learning model is computationally expensive, while resizing the original image to achieve low resolution incurs information loss. Some hard-attention based approaches have emerged to select possible lesion regions from images to avoid processing the original image. However, these hard-attention based approaches usually take a long time to converge with weak guidance, and valueless patches may be trained by the classifier. To overcome this problem, we propose a deep selective attention approach that aims to select valuable regions in the original images for classification. In our approach, a decision network is developed to decide where to crop and whether the cropped patch is necessary for classification. These selected patches are then trained by the classification network, which then provides feedback to the decision network to update its selection policy. With such a co-evolution training strategy, we show that our approach can achieve a fast convergence rate and high classification accuracy. Our approach is evaluated on a public breast cancer histopathological image database, where it demonstrates superior performance compared to state-of-the-art deep learning approaches, achieving approximately 98% classification accuracy while only taking 50% of the training time of the previous hard-attention approach.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2019.2962013</identifier><identifier>PMID: 31880545</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Breast cancer ; breast cancer classification ; Classification ; Convergence ; Deep learning ; Histopathological image ; Image analysis ; Image classification ; Image processing ; Image resolution ; Information processing ; Lesions ; Machine learning ; reinforcement learning ; Task analysis ; Training</subject><ispartof>IEEE transactions on medical imaging, 2020-06, Vol.39 (6), p.1930-1941</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-6e08c10fa78f3fd486dc8caa375cf4e6bc17805603436c920c096efe65e2d6413</citedby><cites>FETCH-LOGICAL-c347t-6e08c10fa78f3fd486dc8caa375cf4e6bc17805603436c920c096efe65e2d6413</cites><orcidid>0000-0001-7305-0736 ; 0000-0002-5877-5648 ; 0000-0001-6071-9197 ; 0000-0002-0488-5913 ; 0000-0003-1420-0815 ; 0000-0002-8728-2842 ; 0000-0002-9690-7074 ; 0000-0002-8589-7261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8941117$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8941117$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31880545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Bolei</creatorcontrib><creatorcontrib>Liu, Jingxin</creatorcontrib><creatorcontrib>Hou, Xianxu</creatorcontrib><creatorcontrib>Liu, Bozhi</creatorcontrib><creatorcontrib>Garibaldi, Jon</creatorcontrib><creatorcontrib>Ellis, Ian O.</creatorcontrib><creatorcontrib>Green, Andy</creatorcontrib><creatorcontrib>Shen, Linlin</creatorcontrib><creatorcontrib>Qiu, Guoping</creatorcontrib><title>Attention by Selection: A Deep Selective Attention Approach to Breast Cancer Classification</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Deep learning approaches are widely applied to histopathological image analysis due to the impressive levels of performance achieved. However, when dealing with high-resolution histopathological images, utilizing the original image as input to the deep learning model is computationally expensive, while resizing the original image to achieve low resolution incurs information loss. Some hard-attention based approaches have emerged to select possible lesion regions from images to avoid processing the original image. However, these hard-attention based approaches usually take a long time to converge with weak guidance, and valueless patches may be trained by the classifier. To overcome this problem, we propose a deep selective attention approach that aims to select valuable regions in the original images for classification. In our approach, a decision network is developed to decide where to crop and whether the cropped patch is necessary for classification. These selected patches are then trained by the classification network, which then provides feedback to the decision network to update its selection policy. With such a co-evolution training strategy, we show that our approach can achieve a fast convergence rate and high classification accuracy. Our approach is evaluated on a public breast cancer histopathological image database, where it demonstrates superior performance compared to state-of-the-art deep learning approaches, achieving approximately 98% classification accuracy while only taking 50% of the training time of the previous hard-attention approach.</description><subject>Accuracy</subject><subject>Breast cancer</subject><subject>breast cancer classification</subject><subject>Classification</subject><subject>Convergence</subject><subject>Deep learning</subject><subject>Histopathological image</subject><subject>Image analysis</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Information processing</subject><subject>Lesions</subject><subject>Machine learning</subject><subject>reinforcement learning</subject><subject>Task analysis</subject><subject>Training</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtLw0AQhxdRtD7ugiALXrykzr53vdX6BMWDCoKHZbudYCRNajYV-t-b0KrgaZiZb4YfHyGHDIaMgTt7frgbcmBuyJ3uqtggA6aUzbiSr5tkANzYDEDzHbKb0gcAkwrcNtkRzFpQUg3I26htsWqLuqKTJX3CEmPfnNMRvUSc_0y-kP6Bo_m8qUN8p21NLxoMqaXjUEVs6LgMKRV5EUMP7pOtPJQJD9Z1j7xcXz2Pb7P7x5u78eg-i0KaNtMINjLIg7G5yKfS6mm0MQRhVMwl6klkpkurQUiho-MQwWnMUSvkUy2Z2COnq79drM8FptbPihSxLEOF9SJ5LgTj0hnXoyf_0I960VRdOs8lOGGlMaqjYEXFpk6pwdzPm2IWmqVn4HvxvhPve_F-Lb47OV4_XkxmOP09-DHdAUcroEDE37V1kjFmxDfGYIXI</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Xu, Bolei</creator><creator>Liu, Jingxin</creator><creator>Hou, Xianxu</creator><creator>Liu, Bozhi</creator><creator>Garibaldi, Jon</creator><creator>Ellis, Ian O.</creator><creator>Green, Andy</creator><creator>Shen, Linlin</creator><creator>Qiu, Guoping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7305-0736</orcidid><orcidid>https://orcid.org/0000-0002-5877-5648</orcidid><orcidid>https://orcid.org/0000-0001-6071-9197</orcidid><orcidid>https://orcid.org/0000-0002-0488-5913</orcidid><orcidid>https://orcid.org/0000-0003-1420-0815</orcidid><orcidid>https://orcid.org/0000-0002-8728-2842</orcidid><orcidid>https://orcid.org/0000-0002-9690-7074</orcidid><orcidid>https://orcid.org/0000-0002-8589-7261</orcidid></search><sort><creationdate>20200601</creationdate><title>Attention by Selection: A Deep Selective Attention Approach to Breast Cancer Classification</title><author>Xu, Bolei ; Liu, Jingxin ; Hou, Xianxu ; Liu, Bozhi ; Garibaldi, Jon ; Ellis, Ian O. ; Green, Andy ; Shen, Linlin ; Qiu, Guoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-6e08c10fa78f3fd486dc8caa375cf4e6bc17805603436c920c096efe65e2d6413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Breast cancer</topic><topic>breast cancer classification</topic><topic>Classification</topic><topic>Convergence</topic><topic>Deep learning</topic><topic>Histopathological image</topic><topic>Image analysis</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Information processing</topic><topic>Lesions</topic><topic>Machine learning</topic><topic>reinforcement learning</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Bolei</creatorcontrib><creatorcontrib>Liu, Jingxin</creatorcontrib><creatorcontrib>Hou, Xianxu</creatorcontrib><creatorcontrib>Liu, Bozhi</creatorcontrib><creatorcontrib>Garibaldi, Jon</creatorcontrib><creatorcontrib>Ellis, Ian O.</creatorcontrib><creatorcontrib>Green, Andy</creatorcontrib><creatorcontrib>Shen, Linlin</creatorcontrib><creatorcontrib>Qiu, Guoping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Bolei</au><au>Liu, Jingxin</au><au>Hou, Xianxu</au><au>Liu, Bozhi</au><au>Garibaldi, Jon</au><au>Ellis, Ian O.</au><au>Green, Andy</au><au>Shen, Linlin</au><au>Qiu, Guoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attention by Selection: A Deep Selective Attention Approach to Breast Cancer Classification</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>39</volume><issue>6</issue><spage>1930</spage><epage>1941</epage><pages>1930-1941</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Deep learning approaches are widely applied to histopathological image analysis due to the impressive levels of performance achieved. However, when dealing with high-resolution histopathological images, utilizing the original image as input to the deep learning model is computationally expensive, while resizing the original image to achieve low resolution incurs information loss. Some hard-attention based approaches have emerged to select possible lesion regions from images to avoid processing the original image. However, these hard-attention based approaches usually take a long time to converge with weak guidance, and valueless patches may be trained by the classifier. To overcome this problem, we propose a deep selective attention approach that aims to select valuable regions in the original images for classification. In our approach, a decision network is developed to decide where to crop and whether the cropped patch is necessary for classification. These selected patches are then trained by the classification network, which then provides feedback to the decision network to update its selection policy. With such a co-evolution training strategy, we show that our approach can achieve a fast convergence rate and high classification accuracy. Our approach is evaluated on a public breast cancer histopathological image database, where it demonstrates superior performance compared to state-of-the-art deep learning approaches, achieving approximately 98% classification accuracy while only taking 50% of the training time of the previous hard-attention approach.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31880545</pmid><doi>10.1109/TMI.2019.2962013</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7305-0736</orcidid><orcidid>https://orcid.org/0000-0002-5877-5648</orcidid><orcidid>https://orcid.org/0000-0001-6071-9197</orcidid><orcidid>https://orcid.org/0000-0002-0488-5913</orcidid><orcidid>https://orcid.org/0000-0003-1420-0815</orcidid><orcidid>https://orcid.org/0000-0002-8728-2842</orcidid><orcidid>https://orcid.org/0000-0002-9690-7074</orcidid><orcidid>https://orcid.org/0000-0002-8589-7261</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2020-06, Vol.39 (6), p.1930-1941
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_journals_2409384775
source IEEE Electronic Library (IEL)
subjects Accuracy
Breast cancer
breast cancer classification
Classification
Convergence
Deep learning
Histopathological image
Image analysis
Image classification
Image processing
Image resolution
Information processing
Lesions
Machine learning
reinforcement learning
Task analysis
Training
title Attention by Selection: A Deep Selective Attention Approach to Breast Cancer Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attention%20by%20Selection:%20A%20Deep%20Selective%20Attention%20Approach%20to%20Breast%20Cancer%20Classification&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Xu,%20Bolei&rft.date=2020-06-01&rft.volume=39&rft.issue=6&rft.spage=1930&rft.epage=1941&rft.pages=1930-1941&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2019.2962013&rft_dat=%3Cproquest_RIE%3E2409384775%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409384775&rft_id=info:pmid/31880545&rft_ieee_id=8941117&rfr_iscdi=true