Regression-Based Neuro-Fuzzy Network Trained by ABC Algorithm for High-Density Impulse Noise Elimination

Salt and pepper (SAP) noise elimination is a crucial step for further image processing and pattern recognition applications. The main aim of this article is to propose a novel SAP noise elimination method which employs a regression-based neuro-fuzzy network for highly corrupted gray scale and color...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2020-06, Vol.28 (6), p.1084-1095
Hauptverfasser: Caliskan, Abdullah, Cil, Zeynel Abidin, Badem, Hasan, Karaboga, Dervis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1095
container_issue 6
container_start_page 1084
container_title IEEE transactions on fuzzy systems
container_volume 28
creator Caliskan, Abdullah
Cil, Zeynel Abidin
Badem, Hasan
Karaboga, Dervis
description Salt and pepper (SAP) noise elimination is a crucial step for further image processing and pattern recognition applications. The main aim of this article is to propose a novel SAP noise elimination method which employs a regression-based neuro-fuzzy network for highly corrupted gray scale and color images. In the proposed method, multiple neuro-fuzzy filters trained with artificial bee colony algorithm is combined with a decision tree algorithm. The performance of the proposed filter is compared with a number of well known methods with respect to popular metrics including, structural similarity index, peak signal-to-noise ratio, and correlation on well known test images. The results reveal that the proposed filter has superior performance in terms of all comparison metrics.
doi_str_mv 10.1109/TFUZZ.2020.2973123
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2409383504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8995478</ieee_id><sourcerecordid>2409383504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-14adc7f870d8262a5e0383b7da97ea1ee06d07c007fed21625499140e7f5bf873</originalsourceid><addsrcrecordid>eNo9kN9PwjAQxxejiYj-A_rSxOfhtevW9REQhIRgYuCFl6VsNyjCiu0WM_56ixhf7i75_rjkEwSPFHqUgnxZjJerVY8Bgx6TIqIsugo6VHIaAkT82t-QRGEiILkN7pzbAVAe07QTbD9wY9E5bapwoBwWZI6NNeG4OZ1af9ffxn6ShVW68tq6Jf3BkPT3G2N1vT2Q0lgy0Ztt-IqV03VLpodjs3dI5kb7Odrrg65U7dvvg5tSeeXhb3eD5Xi0GE7C2fvbdNifhTmTcR1SropclKmAImUJUzFClEZrUSgpUFFESAoQOYAosWA0YTGXknJAUcZrH4u6wfOl92jNV4OuznamsZV_mTEO0pfFwL2LXVy5Nc5ZLLOj1Qdl24xCdiaa_RLNzkSzP6I-9HQJaUT8D6RSxlyk0Q-c-HJn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409383504</pqid></control><display><type>article</type><title>Regression-Based Neuro-Fuzzy Network Trained by ABC Algorithm for High-Density Impulse Noise Elimination</title><source>IEEE Electronic Library (IEL)</source><creator>Caliskan, Abdullah ; Cil, Zeynel Abidin ; Badem, Hasan ; Karaboga, Dervis</creator><creatorcontrib>Caliskan, Abdullah ; Cil, Zeynel Abidin ; Badem, Hasan ; Karaboga, Dervis</creatorcontrib><description>Salt and pepper (SAP) noise elimination is a crucial step for further image processing and pattern recognition applications. The main aim of this article is to propose a novel SAP noise elimination method which employs a regression-based neuro-fuzzy network for highly corrupted gray scale and color images. In the proposed method, multiple neuro-fuzzy filters trained with artificial bee colony algorithm is combined with a decision tree algorithm. The performance of the proposed filter is compared with a number of well known methods with respect to popular metrics including, structural similarity index, peak signal-to-noise ratio, and correlation on well known test images. The results reveal that the proposed filter has superior performance in terms of all comparison metrics.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2020.2973123</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial bee colony (ABC) ; Artificial bee colony algorithm ; Artificial neural networks ; Color imagery ; decision tree (DT) ; Decision trees ; Fuzzy logic ; Fuzzy neural networks ; Fuzzy systems ; Image edge detection ; Image processing ; impulse noise ; Microsoft Windows ; neuro-fuzzy (NF) network ; Noise ; Noise measurement ; Noise reduction ; Object recognition ; Pattern recognition ; Search algorithms ; Signal to noise ratio ; Swarm intelligence</subject><ispartof>IEEE transactions on fuzzy systems, 2020-06, Vol.28 (6), p.1084-1095</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-14adc7f870d8262a5e0383b7da97ea1ee06d07c007fed21625499140e7f5bf873</citedby><cites>FETCH-LOGICAL-c295t-14adc7f870d8262a5e0383b7da97ea1ee06d07c007fed21625499140e7f5bf873</cites><orcidid>0000-0002-4262-8774 ; 0000-0003-1439-6969 ; 0000-0002-9265-6335 ; 0000-0002-7270-9321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8995478$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8995478$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Caliskan, Abdullah</creatorcontrib><creatorcontrib>Cil, Zeynel Abidin</creatorcontrib><creatorcontrib>Badem, Hasan</creatorcontrib><creatorcontrib>Karaboga, Dervis</creatorcontrib><title>Regression-Based Neuro-Fuzzy Network Trained by ABC Algorithm for High-Density Impulse Noise Elimination</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>Salt and pepper (SAP) noise elimination is a crucial step for further image processing and pattern recognition applications. The main aim of this article is to propose a novel SAP noise elimination method which employs a regression-based neuro-fuzzy network for highly corrupted gray scale and color images. In the proposed method, multiple neuro-fuzzy filters trained with artificial bee colony algorithm is combined with a decision tree algorithm. The performance of the proposed filter is compared with a number of well known methods with respect to popular metrics including, structural similarity index, peak signal-to-noise ratio, and correlation on well known test images. The results reveal that the proposed filter has superior performance in terms of all comparison metrics.</description><subject>Algorithms</subject><subject>Artificial bee colony (ABC)</subject><subject>Artificial bee colony algorithm</subject><subject>Artificial neural networks</subject><subject>Color imagery</subject><subject>decision tree (DT)</subject><subject>Decision trees</subject><subject>Fuzzy logic</subject><subject>Fuzzy neural networks</subject><subject>Fuzzy systems</subject><subject>Image edge detection</subject><subject>Image processing</subject><subject>impulse noise</subject><subject>Microsoft Windows</subject><subject>neuro-fuzzy (NF) network</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Noise reduction</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Search algorithms</subject><subject>Signal to noise ratio</subject><subject>Swarm intelligence</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9PwjAQxxejiYj-A_rSxOfhtevW9REQhIRgYuCFl6VsNyjCiu0WM_56ixhf7i75_rjkEwSPFHqUgnxZjJerVY8Bgx6TIqIsugo6VHIaAkT82t-QRGEiILkN7pzbAVAe07QTbD9wY9E5bapwoBwWZI6NNeG4OZ1af9ffxn6ShVW68tq6Jf3BkPT3G2N1vT2Q0lgy0Ztt-IqV03VLpodjs3dI5kb7Odrrg65U7dvvg5tSeeXhb3eD5Xi0GE7C2fvbdNifhTmTcR1SropclKmAImUJUzFClEZrUSgpUFFESAoQOYAosWA0YTGXknJAUcZrH4u6wfOl92jNV4OuznamsZV_mTEO0pfFwL2LXVy5Nc5ZLLOj1Qdl24xCdiaa_RLNzkSzP6I-9HQJaUT8D6RSxlyk0Q-c-HJn</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Caliskan, Abdullah</creator><creator>Cil, Zeynel Abidin</creator><creator>Badem, Hasan</creator><creator>Karaboga, Dervis</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4262-8774</orcidid><orcidid>https://orcid.org/0000-0003-1439-6969</orcidid><orcidid>https://orcid.org/0000-0002-9265-6335</orcidid><orcidid>https://orcid.org/0000-0002-7270-9321</orcidid></search><sort><creationdate>20200601</creationdate><title>Regression-Based Neuro-Fuzzy Network Trained by ABC Algorithm for High-Density Impulse Noise Elimination</title><author>Caliskan, Abdullah ; Cil, Zeynel Abidin ; Badem, Hasan ; Karaboga, Dervis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-14adc7f870d8262a5e0383b7da97ea1ee06d07c007fed21625499140e7f5bf873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial bee colony (ABC)</topic><topic>Artificial bee colony algorithm</topic><topic>Artificial neural networks</topic><topic>Color imagery</topic><topic>decision tree (DT)</topic><topic>Decision trees</topic><topic>Fuzzy logic</topic><topic>Fuzzy neural networks</topic><topic>Fuzzy systems</topic><topic>Image edge detection</topic><topic>Image processing</topic><topic>impulse noise</topic><topic>Microsoft Windows</topic><topic>neuro-fuzzy (NF) network</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Noise reduction</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Search algorithms</topic><topic>Signal to noise ratio</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caliskan, Abdullah</creatorcontrib><creatorcontrib>Cil, Zeynel Abidin</creatorcontrib><creatorcontrib>Badem, Hasan</creatorcontrib><creatorcontrib>Karaboga, Dervis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Caliskan, Abdullah</au><au>Cil, Zeynel Abidin</au><au>Badem, Hasan</au><au>Karaboga, Dervis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regression-Based Neuro-Fuzzy Network Trained by ABC Algorithm for High-Density Impulse Noise Elimination</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>28</volume><issue>6</issue><spage>1084</spage><epage>1095</epage><pages>1084-1095</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>Salt and pepper (SAP) noise elimination is a crucial step for further image processing and pattern recognition applications. The main aim of this article is to propose a novel SAP noise elimination method which employs a regression-based neuro-fuzzy network for highly corrupted gray scale and color images. In the proposed method, multiple neuro-fuzzy filters trained with artificial bee colony algorithm is combined with a decision tree algorithm. The performance of the proposed filter is compared with a number of well known methods with respect to popular metrics including, structural similarity index, peak signal-to-noise ratio, and correlation on well known test images. The results reveal that the proposed filter has superior performance in terms of all comparison metrics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2020.2973123</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4262-8774</orcidid><orcidid>https://orcid.org/0000-0003-1439-6969</orcidid><orcidid>https://orcid.org/0000-0002-9265-6335</orcidid><orcidid>https://orcid.org/0000-0002-7270-9321</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2020-06, Vol.28 (6), p.1084-1095
issn 1063-6706
1941-0034
language eng
recordid cdi_proquest_journals_2409383504
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial bee colony (ABC)
Artificial bee colony algorithm
Artificial neural networks
Color imagery
decision tree (DT)
Decision trees
Fuzzy logic
Fuzzy neural networks
Fuzzy systems
Image edge detection
Image processing
impulse noise
Microsoft Windows
neuro-fuzzy (NF) network
Noise
Noise measurement
Noise reduction
Object recognition
Pattern recognition
Search algorithms
Signal to noise ratio
Swarm intelligence
title Regression-Based Neuro-Fuzzy Network Trained by ABC Algorithm for High-Density Impulse Noise Elimination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A19%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regression-Based%20Neuro-Fuzzy%20Network%20Trained%20by%20ABC%20Algorithm%20for%20High-Density%20Impulse%20Noise%20Elimination&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Caliskan,%20Abdullah&rft.date=2020-06-01&rft.volume=28&rft.issue=6&rft.spage=1084&rft.epage=1095&rft.pages=1084-1095&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2020.2973123&rft_dat=%3Cproquest_RIE%3E2409383504%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409383504&rft_id=info:pmid/&rft_ieee_id=8995478&rfr_iscdi=true