Pinning Synchronization of Directed Coupled Reaction-Diffusion Neural Networks With Sampled-Data Communications

This paper focuses on the design of a pinning sampled-data control mechanism for the exponential synchronization of directed coupled reaction-diffusion neural networks (CRDNNs) with sampled-data communications (SDCs). A new Lyapunov-Krasovskii functional (LKF) with some sampled-instant-dependent ter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2020-06, Vol.31 (6), p.2092-2103
Hauptverfasser: Zeng, Deqiang, Zhang, Ruimei, Park, Ju H., Pu, Zhilin, Liu, Yajuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2103
container_issue 6
container_start_page 2092
container_title IEEE transaction on neural networks and learning systems
container_volume 31
creator Zeng, Deqiang
Zhang, Ruimei
Park, Ju H.
Pu, Zhilin
Liu, Yajuan
description This paper focuses on the design of a pinning sampled-data control mechanism for the exponential synchronization of directed coupled reaction-diffusion neural networks (CRDNNs) with sampled-data communications (SDCs). A new Lyapunov-Krasovskii functional (LKF) with some sampled-instant-dependent terms is presented, which can fully utilize the actual sampling information. Then, an inequality is first proposed, which effectively relaxes the restrictions of the positive definiteness of the constructed LKF. Based on the LKF and the inequality, sufficient conditions are derived to exponentially synchronize the directed CRDNNs with SDCs. The desired pinning sampled-data control gain is precisely obtained by solving some linear matrix inequalities (LMIs). Moreover, a less conservative exponential synchronization criterion is also established for directed coupled neural networks with SDCs. Finally, simulation results are provided to verify the effectiveness and merits of the theoretical results.
doi_str_mv 10.1109/TNNLS.2019.2928039
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2409380075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8788449</ieee_id><sourcerecordid>2409380075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-75e2651f4600d3475b0cb1ec4d74d24e886de11ce761f57bb6ca056ed8e2207d3</originalsourceid><addsrcrecordid>eNqNkV2L1DAUhoso7rLuH1CQgjeCdMx30kuZ8QuGUZwVvStpeupmbZPZJGVZf73pzDiCV-bmBPK8h5PzFMVTjBYYo_r11Waz3i4IwvWC1EQhWj8ozgkWpCJUqYenu_x-VlzGeIPyEYgLVj8uziimNedCnBf-s3XOuh_l9t6Z6-Cd_aWT9a70fbmyAUyCrlz6aTfk-gW0mR-rle37Kc7YBqagh1zSnQ8_Y_nNputyq8eZr1Y66Rwex8lZs28bnxSPej1EuDzWi-Lru7dXyw_V-tP7j8s368pQjlMlORDBcc8EQh1lkrfItBgM6yTrCAOlRAcYG5AC91y2rTA6fw46BYQg2dGL4uWh7y742wliakYbDQyDduCn2BAiEcJMCpLRF_-gN34KLk_XEIZqqhCSPFPkQJngYwzQN7tgRx3uG4ya2UizN9LMRpqjkRx6fmw9tSN0p8if_Wfg1QG4g9b30VhwBk5YVsYZqTmd5ZF5BvX_9NKm_cqzPJdy9NkhagH-RpRUirGa_gaG1rDW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409380075</pqid></control><display><type>article</type><title>Pinning Synchronization of Directed Coupled Reaction-Diffusion Neural Networks With Sampled-Data Communications</title><source>IEEE Electronic Library (IEL)</source><creator>Zeng, Deqiang ; Zhang, Ruimei ; Park, Ju H. ; Pu, Zhilin ; Liu, Yajuan</creator><creatorcontrib>Zeng, Deqiang ; Zhang, Ruimei ; Park, Ju H. ; Pu, Zhilin ; Liu, Yajuan</creatorcontrib><description>This paper focuses on the design of a pinning sampled-data control mechanism for the exponential synchronization of directed coupled reaction-diffusion neural networks (CRDNNs) with sampled-data communications (SDCs). A new Lyapunov-Krasovskii functional (LKF) with some sampled-instant-dependent terms is presented, which can fully utilize the actual sampling information. Then, an inequality is first proposed, which effectively relaxes the restrictions of the positive definiteness of the constructed LKF. Based on the LKF and the inequality, sufficient conditions are derived to exponentially synchronize the directed CRDNNs with SDCs. The desired pinning sampled-data control gain is precisely obtained by solving some linear matrix inequalities (LMIs). Moreover, a less conservative exponential synchronization criterion is also established for directed coupled neural networks with SDCs. Finally, simulation results are provided to verify the effectiveness and merits of the theoretical results.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2019.2928039</identifier><identifier>PMID: 31395566</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Artificial neural networks ; Computer Science ; Computer Science, Artificial Intelligence ; Computer Science, Hardware &amp; Architecture ; Computer Science, Theory &amp; Methods ; Computer simulation ; Data communication ; Delays ; Diffusion ; Directed coupled reaction-diffusion neural networks (CRDNNs) ; Engineering ; Engineering, Electrical &amp; Electronic ; exponential synchronization ; Learning systems ; Linear matrix inequalities ; linear matrix inequalities (LMIs) ; Mathematical analysis ; Neural networks ; Pinning ; pinning sampled-data control ; sampled-data communications (SDCs) ; Science &amp; Technology ; Synchronism ; Synchronization ; Technology</subject><ispartof>IEEE transaction on neural networks and learning systems, 2020-06, Vol.31 (6), p.2092-2103</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>46</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000542953000025</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c351t-75e2651f4600d3475b0cb1ec4d74d24e886de11ce761f57bb6ca056ed8e2207d3</citedby><cites>FETCH-LOGICAL-c351t-75e2651f4600d3475b0cb1ec4d74d24e886de11ce761f57bb6ca056ed8e2207d3</cites><orcidid>0000-0002-6996-5412 ; 0000-0001-6885-9696 ; 0000-0002-0218-2333 ; 0000-0003-4986-8890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8788449$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,28253,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8788449$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31395566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Deqiang</creatorcontrib><creatorcontrib>Zhang, Ruimei</creatorcontrib><creatorcontrib>Park, Ju H.</creatorcontrib><creatorcontrib>Pu, Zhilin</creatorcontrib><creatorcontrib>Liu, Yajuan</creatorcontrib><title>Pinning Synchronization of Directed Coupled Reaction-Diffusion Neural Networks With Sampled-Data Communications</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE T NEUR NET LEAR</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>This paper focuses on the design of a pinning sampled-data control mechanism for the exponential synchronization of directed coupled reaction-diffusion neural networks (CRDNNs) with sampled-data communications (SDCs). A new Lyapunov-Krasovskii functional (LKF) with some sampled-instant-dependent terms is presented, which can fully utilize the actual sampling information. Then, an inequality is first proposed, which effectively relaxes the restrictions of the positive definiteness of the constructed LKF. Based on the LKF and the inequality, sufficient conditions are derived to exponentially synchronize the directed CRDNNs with SDCs. The desired pinning sampled-data control gain is precisely obtained by solving some linear matrix inequalities (LMIs). Moreover, a less conservative exponential synchronization criterion is also established for directed coupled neural networks with SDCs. Finally, simulation results are provided to verify the effectiveness and merits of the theoretical results.</description><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>Computer Science, Artificial Intelligence</subject><subject>Computer Science, Hardware &amp; Architecture</subject><subject>Computer Science, Theory &amp; Methods</subject><subject>Computer simulation</subject><subject>Data communication</subject><subject>Delays</subject><subject>Diffusion</subject><subject>Directed coupled reaction-diffusion neural networks (CRDNNs)</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>exponential synchronization</subject><subject>Learning systems</subject><subject>Linear matrix inequalities</subject><subject>linear matrix inequalities (LMIs)</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Pinning</subject><subject>pinning sampled-data control</subject><subject>sampled-data communications (SDCs)</subject><subject>Science &amp; Technology</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Technology</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkV2L1DAUhoso7rLuH1CQgjeCdMx30kuZ8QuGUZwVvStpeupmbZPZJGVZf73pzDiCV-bmBPK8h5PzFMVTjBYYo_r11Waz3i4IwvWC1EQhWj8ozgkWpCJUqYenu_x-VlzGeIPyEYgLVj8uziimNedCnBf-s3XOuh_l9t6Z6-Cd_aWT9a70fbmyAUyCrlz6aTfk-gW0mR-rle37Kc7YBqagh1zSnQ8_Y_nNputyq8eZr1Y66Rwex8lZs28bnxSPej1EuDzWi-Lru7dXyw_V-tP7j8s368pQjlMlORDBcc8EQh1lkrfItBgM6yTrCAOlRAcYG5AC91y2rTA6fw46BYQg2dGL4uWh7y742wliakYbDQyDduCn2BAiEcJMCpLRF_-gN34KLk_XEIZqqhCSPFPkQJngYwzQN7tgRx3uG4ya2UizN9LMRpqjkRx6fmw9tSN0p8if_Wfg1QG4g9b30VhwBk5YVsYZqTmd5ZF5BvX_9NKm_cqzPJdy9NkhagH-RpRUirGa_gaG1rDW</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Zeng, Deqiang</creator><creator>Zhang, Ruimei</creator><creator>Park, Ju H.</creator><creator>Pu, Zhilin</creator><creator>Liu, Yajuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6996-5412</orcidid><orcidid>https://orcid.org/0000-0001-6885-9696</orcidid><orcidid>https://orcid.org/0000-0002-0218-2333</orcidid><orcidid>https://orcid.org/0000-0003-4986-8890</orcidid></search><sort><creationdate>20200601</creationdate><title>Pinning Synchronization of Directed Coupled Reaction-Diffusion Neural Networks With Sampled-Data Communications</title><author>Zeng, Deqiang ; Zhang, Ruimei ; Park, Ju H. ; Pu, Zhilin ; Liu, Yajuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-75e2651f4600d3475b0cb1ec4d74d24e886de11ce761f57bb6ca056ed8e2207d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>Computer Science, Artificial Intelligence</topic><topic>Computer Science, Hardware &amp; Architecture</topic><topic>Computer Science, Theory &amp; Methods</topic><topic>Computer simulation</topic><topic>Data communication</topic><topic>Delays</topic><topic>Diffusion</topic><topic>Directed coupled reaction-diffusion neural networks (CRDNNs)</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>exponential synchronization</topic><topic>Learning systems</topic><topic>Linear matrix inequalities</topic><topic>linear matrix inequalities (LMIs)</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Pinning</topic><topic>pinning sampled-data control</topic><topic>sampled-data communications (SDCs)</topic><topic>Science &amp; Technology</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Deqiang</creatorcontrib><creatorcontrib>Zhang, Ruimei</creatorcontrib><creatorcontrib>Park, Ju H.</creatorcontrib><creatorcontrib>Pu, Zhilin</creatorcontrib><creatorcontrib>Liu, Yajuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zeng, Deqiang</au><au>Zhang, Ruimei</au><au>Park, Ju H.</au><au>Pu, Zhilin</au><au>Liu, Yajuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pinning Synchronization of Directed Coupled Reaction-Diffusion Neural Networks With Sampled-Data Communications</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><stitle>IEEE T NEUR NET LEAR</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>31</volume><issue>6</issue><spage>2092</spage><epage>2103</epage><pages>2092-2103</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>This paper focuses on the design of a pinning sampled-data control mechanism for the exponential synchronization of directed coupled reaction-diffusion neural networks (CRDNNs) with sampled-data communications (SDCs). A new Lyapunov-Krasovskii functional (LKF) with some sampled-instant-dependent terms is presented, which can fully utilize the actual sampling information. Then, an inequality is first proposed, which effectively relaxes the restrictions of the positive definiteness of the constructed LKF. Based on the LKF and the inequality, sufficient conditions are derived to exponentially synchronize the directed CRDNNs with SDCs. The desired pinning sampled-data control gain is precisely obtained by solving some linear matrix inequalities (LMIs). Moreover, a less conservative exponential synchronization criterion is also established for directed coupled neural networks with SDCs. Finally, simulation results are provided to verify the effectiveness and merits of the theoretical results.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><pmid>31395566</pmid><doi>10.1109/TNNLS.2019.2928039</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6996-5412</orcidid><orcidid>https://orcid.org/0000-0001-6885-9696</orcidid><orcidid>https://orcid.org/0000-0002-0218-2333</orcidid><orcidid>https://orcid.org/0000-0003-4986-8890</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2020-06, Vol.31 (6), p.2092-2103
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_journals_2409380075
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Computer Science
Computer Science, Artificial Intelligence
Computer Science, Hardware & Architecture
Computer Science, Theory & Methods
Computer simulation
Data communication
Delays
Diffusion
Directed coupled reaction-diffusion neural networks (CRDNNs)
Engineering
Engineering, Electrical & Electronic
exponential synchronization
Learning systems
Linear matrix inequalities
linear matrix inequalities (LMIs)
Mathematical analysis
Neural networks
Pinning
pinning sampled-data control
sampled-data communications (SDCs)
Science & Technology
Synchronism
Synchronization
Technology
title Pinning Synchronization of Directed Coupled Reaction-Diffusion Neural Networks With Sampled-Data Communications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T19%3A43%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pinning%20Synchronization%20of%20Directed%20Coupled%20Reaction-Diffusion%20Neural%20Networks%20With%20Sampled-Data%20Communications&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Zeng,%20Deqiang&rft.date=2020-06-01&rft.volume=31&rft.issue=6&rft.spage=2092&rft.epage=2103&rft.pages=2092-2103&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2019.2928039&rft_dat=%3Cproquest_RIE%3E2409380075%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409380075&rft_id=info:pmid/31395566&rft_ieee_id=8788449&rfr_iscdi=true