Ultrawideband Textile Antenna for Wearable Microwave Medical Imaging Applications
This article presents the design of a novel low-profile ultrawideband textile antenna for wearable microwave medical imaging systems. The proposed antenna is based on a monopole structure, where two triangles and a few parallel slots are cut at the bottom corners and top edge of the radiation patch,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2020-06, Vol.68 (6), p.4238-4249 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4249 |
---|---|
container_issue | 6 |
container_start_page | 4238 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 68 |
creator | Lin, Xiaoyou Chen, Yifan Gong, Zheng Seet, Boon-Chong Huang, Ling Lu, Yilong |
description | This article presents the design of a novel low-profile ultrawideband textile antenna for wearable microwave medical imaging systems. The proposed antenna is based on a monopole structure, where two triangles and a few parallel slots are cut at the bottom corners and top edge of the radiation patch, respectively, to achieve an optimized ultrawide bandwidth and a reduced size of the antenna. Polyester fabrics and conductive copper taffeta, which are universally available on the market, are selected to construct the antenna. Thus, the fabricated prototypes well suit the needs of wearable applications, where flexible components are required to conform to the curved human bodies. The measured results show that the antenna prototype can realize a bandwidth of 109% from 1.198 to 4.055 GHz, with a realized gain of 2.9 dBi. Furthermore, the on-phantom measurements show that there is limited effect on the operating bandwidth and realized gain of the antenna when it is working in the proximity to human bodies. The antenna is used to monitor the recovery process of a bone fracture that is emulated by a body-mimicking phantom with a size-varying blood strip. The time-domain reflection coefficient of the antenna varies significantly with the size of the fracture introduced, which demonstrates the applicability of the antenna for such use scenarios in microwave medical imaging. |
doi_str_mv | 10.1109/TAP.2020.2970072 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2409379748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8979267</ieee_id><sourcerecordid>2409379748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b4ca60314a111db9f5ca5c6ced60c27f35b96c161cfeb61ced6b758f304e2c583</originalsourceid><addsrcrecordid>eNo9kM1LwzAYxoMoOKd3wUvBc2eSJk1zLEPnYKLCht5Cmr4ZGV1bk87pf2_Ghpf34-F5P_ghdEvwhBAsH5bl24RiiidUCowFPUMjwnmRUkrJORphTIpU0vzzEl2FsIktKxgbofdVM3i9dzVUuq2TJfwMroGkbAdoW53YzicfoL2uovjijO_2-jtWUDujm2S-1WvXrpOy75soDK5rwzW6sLoJcHPKY7R6elxOn9PF62w-LRepoZIMacWMznFGmCaE1JW03GhucgN1jg0VNuOVzA3JibFQxRj1SvDCZpgBNbzIxuj-uLf33dcOwqA23c638aSiDMtMSMEOLnx0xddD8GBV791W-19FsDqAUxGcOoBTJ3Bx5O444gDg315IEfGJ7A9p42oi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409379748</pqid></control><display><type>article</type><title>Ultrawideband Textile Antenna for Wearable Microwave Medical Imaging Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Xiaoyou ; Chen, Yifan ; Gong, Zheng ; Seet, Boon-Chong ; Huang, Ling ; Lu, Yilong</creator><creatorcontrib>Lin, Xiaoyou ; Chen, Yifan ; Gong, Zheng ; Seet, Boon-Chong ; Huang, Ling ; Lu, Yilong</creatorcontrib><description>This article presents the design of a novel low-profile ultrawideband textile antenna for wearable microwave medical imaging systems. The proposed antenna is based on a monopole structure, where two triangles and a few parallel slots are cut at the bottom corners and top edge of the radiation patch, respectively, to achieve an optimized ultrawide bandwidth and a reduced size of the antenna. Polyester fabrics and conductive copper taffeta, which are universally available on the market, are selected to construct the antenna. Thus, the fabricated prototypes well suit the needs of wearable applications, where flexible components are required to conform to the curved human bodies. The measured results show that the antenna prototype can realize a bandwidth of 109% from 1.198 to 4.055 GHz, with a realized gain of 2.9 dBi. Furthermore, the on-phantom measurements show that there is limited effect on the operating bandwidth and realized gain of the antenna when it is working in the proximity to human bodies. The antenna is used to monitor the recovery process of a bone fracture that is emulated by a body-mimicking phantom with a size-varying blood strip. The time-domain reflection coefficient of the antenna varies significantly with the size of the fracture introduced, which demonstrates the applicability of the antenna for such use scenarios in microwave medical imaging.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2020.2970072</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna measurements ; Antennas ; Bandwidths ; Biomedical monitoring ; Economic conditions ; Flexible components ; Fractures ; Medical imaging ; Microwave antennas ; Microwave imaging ; Microwave medical imaging ; Microwave theory and techniques ; Prototypes ; Reflectance ; textile antenna ; Ultrawideband ; ultrawideband antenna ; Wearable technology</subject><ispartof>IEEE transactions on antennas and propagation, 2020-06, Vol.68 (6), p.4238-4249</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b4ca60314a111db9f5ca5c6ced60c27f35b96c161cfeb61ced6b758f304e2c583</citedby><cites>FETCH-LOGICAL-c291t-b4ca60314a111db9f5ca5c6ced60c27f35b96c161cfeb61ced6b758f304e2c583</cites><orcidid>0000-0002-0616-8141 ; 0000-0002-9511-7521 ; 0000-0002-8627-5173 ; 0000-0002-3151-6259 ; 0000-0001-7645-623X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8979267$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8979267$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin, Xiaoyou</creatorcontrib><creatorcontrib>Chen, Yifan</creatorcontrib><creatorcontrib>Gong, Zheng</creatorcontrib><creatorcontrib>Seet, Boon-Chong</creatorcontrib><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Lu, Yilong</creatorcontrib><title>Ultrawideband Textile Antenna for Wearable Microwave Medical Imaging Applications</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>This article presents the design of a novel low-profile ultrawideband textile antenna for wearable microwave medical imaging systems. The proposed antenna is based on a monopole structure, where two triangles and a few parallel slots are cut at the bottom corners and top edge of the radiation patch, respectively, to achieve an optimized ultrawide bandwidth and a reduced size of the antenna. Polyester fabrics and conductive copper taffeta, which are universally available on the market, are selected to construct the antenna. Thus, the fabricated prototypes well suit the needs of wearable applications, where flexible components are required to conform to the curved human bodies. The measured results show that the antenna prototype can realize a bandwidth of 109% from 1.198 to 4.055 GHz, with a realized gain of 2.9 dBi. Furthermore, the on-phantom measurements show that there is limited effect on the operating bandwidth and realized gain of the antenna when it is working in the proximity to human bodies. The antenna is used to monitor the recovery process of a bone fracture that is emulated by a body-mimicking phantom with a size-varying blood strip. The time-domain reflection coefficient of the antenna varies significantly with the size of the fracture introduced, which demonstrates the applicability of the antenna for such use scenarios in microwave medical imaging.</description><subject>Antenna measurements</subject><subject>Antennas</subject><subject>Bandwidths</subject><subject>Biomedical monitoring</subject><subject>Economic conditions</subject><subject>Flexible components</subject><subject>Fractures</subject><subject>Medical imaging</subject><subject>Microwave antennas</subject><subject>Microwave imaging</subject><subject>Microwave medical imaging</subject><subject>Microwave theory and techniques</subject><subject>Prototypes</subject><subject>Reflectance</subject><subject>textile antenna</subject><subject>Ultrawideband</subject><subject>ultrawideband antenna</subject><subject>Wearable technology</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LwzAYxoMoOKd3wUvBc2eSJk1zLEPnYKLCht5Cmr4ZGV1bk87pf2_Ghpf34-F5P_ghdEvwhBAsH5bl24RiiidUCowFPUMjwnmRUkrJORphTIpU0vzzEl2FsIktKxgbofdVM3i9dzVUuq2TJfwMroGkbAdoW53YzicfoL2uovjijO_2-jtWUDujm2S-1WvXrpOy75soDK5rwzW6sLoJcHPKY7R6elxOn9PF62w-LRepoZIMacWMznFGmCaE1JW03GhucgN1jg0VNuOVzA3JibFQxRj1SvDCZpgBNbzIxuj-uLf33dcOwqA23c638aSiDMtMSMEOLnx0xddD8GBV791W-19FsDqAUxGcOoBTJ3Bx5O444gDg315IEfGJ7A9p42oi</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Lin, Xiaoyou</creator><creator>Chen, Yifan</creator><creator>Gong, Zheng</creator><creator>Seet, Boon-Chong</creator><creator>Huang, Ling</creator><creator>Lu, Yilong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0616-8141</orcidid><orcidid>https://orcid.org/0000-0002-9511-7521</orcidid><orcidid>https://orcid.org/0000-0002-8627-5173</orcidid><orcidid>https://orcid.org/0000-0002-3151-6259</orcidid><orcidid>https://orcid.org/0000-0001-7645-623X</orcidid></search><sort><creationdate>20200601</creationdate><title>Ultrawideband Textile Antenna for Wearable Microwave Medical Imaging Applications</title><author>Lin, Xiaoyou ; Chen, Yifan ; Gong, Zheng ; Seet, Boon-Chong ; Huang, Ling ; Lu, Yilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b4ca60314a111db9f5ca5c6ced60c27f35b96c161cfeb61ced6b758f304e2c583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antenna measurements</topic><topic>Antennas</topic><topic>Bandwidths</topic><topic>Biomedical monitoring</topic><topic>Economic conditions</topic><topic>Flexible components</topic><topic>Fractures</topic><topic>Medical imaging</topic><topic>Microwave antennas</topic><topic>Microwave imaging</topic><topic>Microwave medical imaging</topic><topic>Microwave theory and techniques</topic><topic>Prototypes</topic><topic>Reflectance</topic><topic>textile antenna</topic><topic>Ultrawideband</topic><topic>ultrawideband antenna</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Xiaoyou</creatorcontrib><creatorcontrib>Chen, Yifan</creatorcontrib><creatorcontrib>Gong, Zheng</creatorcontrib><creatorcontrib>Seet, Boon-Chong</creatorcontrib><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Lu, Yilong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Xiaoyou</au><au>Chen, Yifan</au><au>Gong, Zheng</au><au>Seet, Boon-Chong</au><au>Huang, Ling</au><au>Lu, Yilong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrawideband Textile Antenna for Wearable Microwave Medical Imaging Applications</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>68</volume><issue>6</issue><spage>4238</spage><epage>4249</epage><pages>4238-4249</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>This article presents the design of a novel low-profile ultrawideband textile antenna for wearable microwave medical imaging systems. The proposed antenna is based on a monopole structure, where two triangles and a few parallel slots are cut at the bottom corners and top edge of the radiation patch, respectively, to achieve an optimized ultrawide bandwidth and a reduced size of the antenna. Polyester fabrics and conductive copper taffeta, which are universally available on the market, are selected to construct the antenna. Thus, the fabricated prototypes well suit the needs of wearable applications, where flexible components are required to conform to the curved human bodies. The measured results show that the antenna prototype can realize a bandwidth of 109% from 1.198 to 4.055 GHz, with a realized gain of 2.9 dBi. Furthermore, the on-phantom measurements show that there is limited effect on the operating bandwidth and realized gain of the antenna when it is working in the proximity to human bodies. The antenna is used to monitor the recovery process of a bone fracture that is emulated by a body-mimicking phantom with a size-varying blood strip. The time-domain reflection coefficient of the antenna varies significantly with the size of the fracture introduced, which demonstrates the applicability of the antenna for such use scenarios in microwave medical imaging.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2020.2970072</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0616-8141</orcidid><orcidid>https://orcid.org/0000-0002-9511-7521</orcidid><orcidid>https://orcid.org/0000-0002-8627-5173</orcidid><orcidid>https://orcid.org/0000-0002-3151-6259</orcidid><orcidid>https://orcid.org/0000-0001-7645-623X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2020-06, Vol.68 (6), p.4238-4249 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_proquest_journals_2409379748 |
source | IEEE Electronic Library (IEL) |
subjects | Antenna measurements Antennas Bandwidths Biomedical monitoring Economic conditions Flexible components Fractures Medical imaging Microwave antennas Microwave imaging Microwave medical imaging Microwave theory and techniques Prototypes Reflectance textile antenna Ultrawideband ultrawideband antenna Wearable technology |
title | Ultrawideband Textile Antenna for Wearable Microwave Medical Imaging Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrawideband%20Textile%20Antenna%20for%20Wearable%20Microwave%20Medical%20Imaging%20Applications&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Lin,%20Xiaoyou&rft.date=2020-06-01&rft.volume=68&rft.issue=6&rft.spage=4238&rft.epage=4249&rft.pages=4238-4249&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2020.2970072&rft_dat=%3Cproquest_RIE%3E2409379748%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409379748&rft_id=info:pmid/&rft_ieee_id=8979267&rfr_iscdi=true |