Graphene assisted terahertz metamaterials for sensitive bio-sensing

•Highly sensitive monitoring of biomolecules in very low concentration using low energy photon is introduced.•Dramatically enhanced transmittance change by graphene hybridization with different types of ssDNA was detected.•Quantitative analysis of graphene conductivity under terahertz nearfield ampl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2020-05, Vol.310, p.127841-7, Article 127841
Hauptverfasser: Lee, Sang-Hun, Choe, Jong-Ho, Kim, Chulki, Bae, Sukang, Kim, Jin-Soo, Park, Q-Han, Seo, Minah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue
container_start_page 127841
container_title Sensors and actuators. B, Chemical
container_volume 310
creator Lee, Sang-Hun
Choe, Jong-Ho
Kim, Chulki
Bae, Sukang
Kim, Jin-Soo
Park, Q-Han
Seo, Minah
description •Highly sensitive monitoring of biomolecules in very low concentration using low energy photon is introduced.•Dramatically enhanced transmittance change by graphene hybridization with different types of ssDNA was detected.•Quantitative analysis of graphene conductivity under terahertz nearfield amplification was shown. We report that single-stranded deoxyribonucleic acids (ssDNAs) at very low concentrations can be detected using graphene-combined nano-slot-based terahertz (THz) resonance. A combination of the resonant structure and tuned electro-optical properties of graphene can provide unprecedentedly sensitive biomolecule sensing even using very low energy THz photons, overcoming the huge scale difference of 10,000:1 between the wavelength and the size of the ssDNAs. Ultrahigh sensitivity is obtained by the significant increase in the absorption cross-section of the graphene sheet with the targeted biomolecules, induced by strong THz field enhancement at the resonance frequency inside the slots. Clearly distinguishable THz optical signals were observed between different species of ssDNAs even at the nano-mole level and analyzed quantitatively in terms of the electro-optical properties of the suspended graphene layer modified by the attached ssDNAs without any molecular-specific labeling for the THz regime. Quantitative analysis of ssDNA molecule adsorption was carried based on the change in conductivity using a theoretical THz transmission model.
doi_str_mv 10.1016/j.snb.2020.127841
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409321361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092540052030188X</els_id><sourcerecordid>2409321361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-ef7c0ae3cd73f59f036a7a2c7a14fd79dbec489a3af43111714f84c368858c463</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNuC562Tj91k8SRFq1DwoueQZic2i91dk7Sgv97U9ewpvOF9ZoaHkGsKCwq0vu0Wsd8sGLCcmVSCnpAZVZKXHKQ8JTNoWFUKgOqcXMTYAYDgNczIchXMuMUeCxOjjwnbImEwWwzpu9hhMjuTszcfsXBDKCL20Sd_wGLjh_I39e-X5MzlAl79vXPy9vjwunwq1y-r5-X9urS8VqlEJy0Y5LaV3FWNA14baZiVhgrXyqbdoBWqMdw4wSmlMn8rcWRVpayo-ZzcTHPHMHzuMSbdDfvQ55WaCWg4o7ymuUWnlg1DjAGdHoPfmfClKeijK93p7EofXenJVWbuJgbz-QePQUfrsbfY-oA26Xbw_9A_hNhx1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409321361</pqid></control><display><type>article</type><title>Graphene assisted terahertz metamaterials for sensitive bio-sensing</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lee, Sang-Hun ; Choe, Jong-Ho ; Kim, Chulki ; Bae, Sukang ; Kim, Jin-Soo ; Park, Q-Han ; Seo, Minah</creator><creatorcontrib>Lee, Sang-Hun ; Choe, Jong-Ho ; Kim, Chulki ; Bae, Sukang ; Kim, Jin-Soo ; Park, Q-Han ; Seo, Minah</creatorcontrib><description>•Highly sensitive monitoring of biomolecules in very low concentration using low energy photon is introduced.•Dramatically enhanced transmittance change by graphene hybridization with different types of ssDNA was detected.•Quantitative analysis of graphene conductivity under terahertz nearfield amplification was shown. We report that single-stranded deoxyribonucleic acids (ssDNAs) at very low concentrations can be detected using graphene-combined nano-slot-based terahertz (THz) resonance. A combination of the resonant structure and tuned electro-optical properties of graphene can provide unprecedentedly sensitive biomolecule sensing even using very low energy THz photons, overcoming the huge scale difference of 10,000:1 between the wavelength and the size of the ssDNAs. Ultrahigh sensitivity is obtained by the significant increase in the absorption cross-section of the graphene sheet with the targeted biomolecules, induced by strong THz field enhancement at the resonance frequency inside the slots. Clearly distinguishable THz optical signals were observed between different species of ssDNAs even at the nano-mole level and analyzed quantitatively in terms of the electro-optical properties of the suspended graphene layer modified by the attached ssDNAs without any molecular-specific labeling for the THz regime. Quantitative analysis of ssDNA molecule adsorption was carried based on the change in conductivity using a theoretical THz transmission model.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2020.127841</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Absorption cross sections ; Biomolecules ; Biosensor ; Graphene ; Low concentrations ; Metamaterial ; Metamaterials ; Optical communication ; Optical properties ; Resonance ; Terahertz ; Terahertz frequencies</subject><ispartof>Sensors and actuators. B, Chemical, 2020-05, Vol.310, p.127841-7, Article 127841</ispartof><rights>2020 The Author(s)</rights><rights>Copyright Elsevier Science Ltd. May 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-ef7c0ae3cd73f59f036a7a2c7a14fd79dbec489a3af43111714f84c368858c463</citedby><cites>FETCH-LOGICAL-c368t-ef7c0ae3cd73f59f036a7a2c7a14fd79dbec489a3af43111714f84c368858c463</cites><orcidid>0000-0003-1290-9716 ; 0000-0002-0830-7862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.snb.2020.127841$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lee, Sang-Hun</creatorcontrib><creatorcontrib>Choe, Jong-Ho</creatorcontrib><creatorcontrib>Kim, Chulki</creatorcontrib><creatorcontrib>Bae, Sukang</creatorcontrib><creatorcontrib>Kim, Jin-Soo</creatorcontrib><creatorcontrib>Park, Q-Han</creatorcontrib><creatorcontrib>Seo, Minah</creatorcontrib><title>Graphene assisted terahertz metamaterials for sensitive bio-sensing</title><title>Sensors and actuators. B, Chemical</title><description>•Highly sensitive monitoring of biomolecules in very low concentration using low energy photon is introduced.•Dramatically enhanced transmittance change by graphene hybridization with different types of ssDNA was detected.•Quantitative analysis of graphene conductivity under terahertz nearfield amplification was shown. We report that single-stranded deoxyribonucleic acids (ssDNAs) at very low concentrations can be detected using graphene-combined nano-slot-based terahertz (THz) resonance. A combination of the resonant structure and tuned electro-optical properties of graphene can provide unprecedentedly sensitive biomolecule sensing even using very low energy THz photons, overcoming the huge scale difference of 10,000:1 between the wavelength and the size of the ssDNAs. Ultrahigh sensitivity is obtained by the significant increase in the absorption cross-section of the graphene sheet with the targeted biomolecules, induced by strong THz field enhancement at the resonance frequency inside the slots. Clearly distinguishable THz optical signals were observed between different species of ssDNAs even at the nano-mole level and analyzed quantitatively in terms of the electro-optical properties of the suspended graphene layer modified by the attached ssDNAs without any molecular-specific labeling for the THz regime. Quantitative analysis of ssDNA molecule adsorption was carried based on the change in conductivity using a theoretical THz transmission model.</description><subject>Absorption cross sections</subject><subject>Biomolecules</subject><subject>Biosensor</subject><subject>Graphene</subject><subject>Low concentrations</subject><subject>Metamaterial</subject><subject>Metamaterials</subject><subject>Optical communication</subject><subject>Optical properties</subject><subject>Resonance</subject><subject>Terahertz</subject><subject>Terahertz frequencies</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNuC562Tj91k8SRFq1DwoueQZic2i91dk7Sgv97U9ewpvOF9ZoaHkGsKCwq0vu0Wsd8sGLCcmVSCnpAZVZKXHKQ8JTNoWFUKgOqcXMTYAYDgNczIchXMuMUeCxOjjwnbImEwWwzpu9hhMjuTszcfsXBDKCL20Sd_wGLjh_I39e-X5MzlAl79vXPy9vjwunwq1y-r5-X9urS8VqlEJy0Y5LaV3FWNA14baZiVhgrXyqbdoBWqMdw4wSmlMn8rcWRVpayo-ZzcTHPHMHzuMSbdDfvQ55WaCWg4o7ymuUWnlg1DjAGdHoPfmfClKeijK93p7EofXenJVWbuJgbz-QePQUfrsbfY-oA26Xbw_9A_hNhx1A</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Lee, Sang-Hun</creator><creator>Choe, Jong-Ho</creator><creator>Kim, Chulki</creator><creator>Bae, Sukang</creator><creator>Kim, Jin-Soo</creator><creator>Park, Q-Han</creator><creator>Seo, Minah</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1290-9716</orcidid><orcidid>https://orcid.org/0000-0002-0830-7862</orcidid></search><sort><creationdate>20200501</creationdate><title>Graphene assisted terahertz metamaterials for sensitive bio-sensing</title><author>Lee, Sang-Hun ; Choe, Jong-Ho ; Kim, Chulki ; Bae, Sukang ; Kim, Jin-Soo ; Park, Q-Han ; Seo, Minah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-ef7c0ae3cd73f59f036a7a2c7a14fd79dbec489a3af43111714f84c368858c463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption cross sections</topic><topic>Biomolecules</topic><topic>Biosensor</topic><topic>Graphene</topic><topic>Low concentrations</topic><topic>Metamaterial</topic><topic>Metamaterials</topic><topic>Optical communication</topic><topic>Optical properties</topic><topic>Resonance</topic><topic>Terahertz</topic><topic>Terahertz frequencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sang-Hun</creatorcontrib><creatorcontrib>Choe, Jong-Ho</creatorcontrib><creatorcontrib>Kim, Chulki</creatorcontrib><creatorcontrib>Bae, Sukang</creatorcontrib><creatorcontrib>Kim, Jin-Soo</creatorcontrib><creatorcontrib>Park, Q-Han</creatorcontrib><creatorcontrib>Seo, Minah</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sang-Hun</au><au>Choe, Jong-Ho</au><au>Kim, Chulki</au><au>Bae, Sukang</au><au>Kim, Jin-Soo</au><au>Park, Q-Han</au><au>Seo, Minah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene assisted terahertz metamaterials for sensitive bio-sensing</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>310</volume><spage>127841</spage><epage>7</epage><pages>127841-7</pages><artnum>127841</artnum><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>•Highly sensitive monitoring of biomolecules in very low concentration using low energy photon is introduced.•Dramatically enhanced transmittance change by graphene hybridization with different types of ssDNA was detected.•Quantitative analysis of graphene conductivity under terahertz nearfield amplification was shown. We report that single-stranded deoxyribonucleic acids (ssDNAs) at very low concentrations can be detected using graphene-combined nano-slot-based terahertz (THz) resonance. A combination of the resonant structure and tuned electro-optical properties of graphene can provide unprecedentedly sensitive biomolecule sensing even using very low energy THz photons, overcoming the huge scale difference of 10,000:1 between the wavelength and the size of the ssDNAs. Ultrahigh sensitivity is obtained by the significant increase in the absorption cross-section of the graphene sheet with the targeted biomolecules, induced by strong THz field enhancement at the resonance frequency inside the slots. Clearly distinguishable THz optical signals were observed between different species of ssDNAs even at the nano-mole level and analyzed quantitatively in terms of the electro-optical properties of the suspended graphene layer modified by the attached ssDNAs without any molecular-specific labeling for the THz regime. Quantitative analysis of ssDNA molecule adsorption was carried based on the change in conductivity using a theoretical THz transmission model.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2020.127841</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1290-9716</orcidid><orcidid>https://orcid.org/0000-0002-0830-7862</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2020-05, Vol.310, p.127841-7, Article 127841
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_journals_2409321361
source Access via ScienceDirect (Elsevier)
subjects Absorption cross sections
Biomolecules
Biosensor
Graphene
Low concentrations
Metamaterial
Metamaterials
Optical communication
Optical properties
Resonance
Terahertz
Terahertz frequencies
title Graphene assisted terahertz metamaterials for sensitive bio-sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A36%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20assisted%20terahertz%20metamaterials%20for%20sensitive%20bio-sensing&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Lee,%20Sang-Hun&rft.date=2020-05-01&rft.volume=310&rft.spage=127841&rft.epage=7&rft.pages=127841-7&rft.artnum=127841&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2020.127841&rft_dat=%3Cproquest_cross%3E2409321361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409321361&rft_id=info:pmid/&rft_els_id=S092540052030188X&rfr_iscdi=true