Disappointing Survival Forecast for a Local Population of Androsace albana in a Random Environment

A local population of Andropace albana , a short-lived perennial plant, has been monitored during 10 years on permanent plots laid down in an alpine lichen heath in 2009. We summarize the outcome of monitoring as a non-autonomous matrix model of stage-structured population dynamics. The model origin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology bulletin reviews 2020, Vol.10 (3), p.202-214
Hauptverfasser: Logofet, D. O., Kazantseva, E. S., Belova, I. N., Onipchenko, V. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 214
container_issue 3
container_start_page 202
container_title Biology bulletin reviews
container_volume 10
creator Logofet, D. O.
Kazantseva, E. S.
Belova, I. N.
Onipchenko, V. G.
description A local population of Andropace albana , a short-lived perennial plant, has been monitored during 10 years on permanent plots laid down in an alpine lichen heath in 2009. We summarize the outcome of monitoring as a non-autonomous matrix model of stage-structured population dynamics. The model originates from a life cycle graph constructed earlier for the stages of ontogenesis and consists of 9 annual “projection” matrices that are calibrated in a unique way from the observation data. Five of the 9 matrices have their dominant eigenvalues greater than 1, i.e., give favorable forecasts for the local population survival, while the rest four have those values less than 1, i.e., give the negative forecasts. To make the resulting prediction, we apply an original concept of the pattern - geometric averaging of given nonnegative matrices and obtain the dominant eigenvalue, λ 1 ( G 9 ), of the average matrix G 9 markedly less than 1, indicating the population decline in the long term. The traditional method to forecast the local population is to estimate λ S , the stochastic growth rate of the population in a random environment formed by a random choice from the same 9 annual matrices. Assuming the choice to be independent and equiprobable, we obtain the negative result as well, yet with higher quantitative values of λ S . We associate these higher values with the artificial assumption of equal choice probability when forming the random sequence of annual matrices, each of which is indirectly reflecting the habitat conditions that have influenced the growth and development of plants during the year prior the calibration moment . This motivates the task to construct a more adequate model for choosing annual matrices, in which the probability of choice would be related to the dynamics of the real habitat factors for a given local population.
doi_str_mv 10.1134/S2079086420030044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409214889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409214889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1614-4971341bd1d816e3ed9cd01806b47551a3db899a7b09eadf0bd4d8cac6aa8a163</originalsourceid><addsrcrecordid>eNp1UMFKAzEQDaJgqf0AbwHP1cluupscS21VKChWz8tski0p22RNdgv-vSkVPYhzmeHx3puZR8g1g1vGcn63yaCUIAqeAeQAnJ-R0RGagiiz85-54JdkEuMOUnHJoMxHpL63EbvOW9dbt6WbIRzsAVu68sEojD1tfKBI114l8MV3Q4u99Y76hs6dDj6iMhTbGh1S6xLzFZ32e7p0Bxu82xvXX5GLBttoJt99TN5Xy7fF43T9_PC0mK-nihWMT7ks0y-s1kwLVpjcaKk0MAFFzcvZjGGuayElljVIg7qBWnMtFKoCUSAr8jG5Ofl2wX8MJvbVzg_BpZVVxkFmjAshE4udWCodH4Npqi7YPYbPikF1TLP6k2bSZCdNTFy3NeHX-X_RF_G8di4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409214889</pqid></control><display><type>article</type><title>Disappointing Survival Forecast for a Local Population of Androsace albana in a Random Environment</title><source>SpringerNature Journals</source><creator>Logofet, D. O. ; Kazantseva, E. S. ; Belova, I. N. ; Onipchenko, V. G.</creator><creatorcontrib>Logofet, D. O. ; Kazantseva, E. S. ; Belova, I. N. ; Onipchenko, V. G.</creatorcontrib><description>A local population of Andropace albana , a short-lived perennial plant, has been monitored during 10 years on permanent plots laid down in an alpine lichen heath in 2009. We summarize the outcome of monitoring as a non-autonomous matrix model of stage-structured population dynamics. The model originates from a life cycle graph constructed earlier for the stages of ontogenesis and consists of 9 annual “projection” matrices that are calibrated in a unique way from the observation data. Five of the 9 matrices have their dominant eigenvalues greater than 1, i.e., give favorable forecasts for the local population survival, while the rest four have those values less than 1, i.e., give the negative forecasts. To make the resulting prediction, we apply an original concept of the pattern - geometric averaging of given nonnegative matrices and obtain the dominant eigenvalue, λ 1 ( G 9 ), of the average matrix G 9 markedly less than 1, indicating the population decline in the long term. The traditional method to forecast the local population is to estimate λ S , the stochastic growth rate of the population in a random environment formed by a random choice from the same 9 annual matrices. Assuming the choice to be independent and equiprobable, we obtain the negative result as well, yet with higher quantitative values of λ S . We associate these higher values with the artificial assumption of equal choice probability when forming the random sequence of annual matrices, each of which is indirectly reflecting the habitat conditions that have influenced the growth and development of plants during the year prior the calibration moment . This motivates the task to construct a more adequate model for choosing annual matrices, in which the probability of choice would be related to the dynamics of the real habitat factors for a given local population.</description><identifier>ISSN: 2079-0864</identifier><identifier>EISSN: 2079-0872</identifier><identifier>DOI: 10.1134/S2079086420030044</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Cell Biology ; Ecology ; Growth rate ; Life cycles ; Life Sciences ; Population ; Population decline ; Population dynamics ; Stochasticity ; Survival ; Zoology</subject><ispartof>Biology bulletin reviews, 2020, Vol.10 (3), p.202-214</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1614-4971341bd1d816e3ed9cd01806b47551a3db899a7b09eadf0bd4d8cac6aa8a163</citedby><cites>FETCH-LOGICAL-c1614-4971341bd1d816e3ed9cd01806b47551a3db899a7b09eadf0bd4d8cac6aa8a163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S2079086420030044$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S2079086420030044$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Logofet, D. O.</creatorcontrib><creatorcontrib>Kazantseva, E. S.</creatorcontrib><creatorcontrib>Belova, I. N.</creatorcontrib><creatorcontrib>Onipchenko, V. G.</creatorcontrib><title>Disappointing Survival Forecast for a Local Population of Androsace albana in a Random Environment</title><title>Biology bulletin reviews</title><addtitle>Biol Bull Rev</addtitle><description>A local population of Andropace albana , a short-lived perennial plant, has been monitored during 10 years on permanent plots laid down in an alpine lichen heath in 2009. We summarize the outcome of monitoring as a non-autonomous matrix model of stage-structured population dynamics. The model originates from a life cycle graph constructed earlier for the stages of ontogenesis and consists of 9 annual “projection” matrices that are calibrated in a unique way from the observation data. Five of the 9 matrices have their dominant eigenvalues greater than 1, i.e., give favorable forecasts for the local population survival, while the rest four have those values less than 1, i.e., give the negative forecasts. To make the resulting prediction, we apply an original concept of the pattern - geometric averaging of given nonnegative matrices and obtain the dominant eigenvalue, λ 1 ( G 9 ), of the average matrix G 9 markedly less than 1, indicating the population decline in the long term. The traditional method to forecast the local population is to estimate λ S , the stochastic growth rate of the population in a random environment formed by a random choice from the same 9 annual matrices. Assuming the choice to be independent and equiprobable, we obtain the negative result as well, yet with higher quantitative values of λ S . We associate these higher values with the artificial assumption of equal choice probability when forming the random sequence of annual matrices, each of which is indirectly reflecting the habitat conditions that have influenced the growth and development of plants during the year prior the calibration moment . This motivates the task to construct a more adequate model for choosing annual matrices, in which the probability of choice would be related to the dynamics of the real habitat factors for a given local population.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Ecology</subject><subject>Growth rate</subject><subject>Life cycles</subject><subject>Life Sciences</subject><subject>Population</subject><subject>Population decline</subject><subject>Population dynamics</subject><subject>Stochasticity</subject><subject>Survival</subject><subject>Zoology</subject><issn>2079-0864</issn><issn>2079-0872</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UMFKAzEQDaJgqf0AbwHP1cluupscS21VKChWz8tski0p22RNdgv-vSkVPYhzmeHx3puZR8g1g1vGcn63yaCUIAqeAeQAnJ-R0RGagiiz85-54JdkEuMOUnHJoMxHpL63EbvOW9dbt6WbIRzsAVu68sEojD1tfKBI114l8MV3Q4u99Y76hs6dDj6iMhTbGh1S6xLzFZ32e7p0Bxu82xvXX5GLBttoJt99TN5Xy7fF43T9_PC0mK-nihWMT7ks0y-s1kwLVpjcaKk0MAFFzcvZjGGuayElljVIg7qBWnMtFKoCUSAr8jG5Ofl2wX8MJvbVzg_BpZVVxkFmjAshE4udWCodH4Npqi7YPYbPikF1TLP6k2bSZCdNTFy3NeHX-X_RF_G8di4</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Logofet, D. O.</creator><creator>Kazantseva, E. S.</creator><creator>Belova, I. N.</creator><creator>Onipchenko, V. G.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2020</creationdate><title>Disappointing Survival Forecast for a Local Population of Androsace albana in a Random Environment</title><author>Logofet, D. O. ; Kazantseva, E. S. ; Belova, I. N. ; Onipchenko, V. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1614-4971341bd1d816e3ed9cd01806b47551a3db899a7b09eadf0bd4d8cac6aa8a163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Ecology</topic><topic>Growth rate</topic><topic>Life cycles</topic><topic>Life Sciences</topic><topic>Population</topic><topic>Population decline</topic><topic>Population dynamics</topic><topic>Stochasticity</topic><topic>Survival</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Logofet, D. O.</creatorcontrib><creatorcontrib>Kazantseva, E. S.</creatorcontrib><creatorcontrib>Belova, I. N.</creatorcontrib><creatorcontrib>Onipchenko, V. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Biology bulletin reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Logofet, D. O.</au><au>Kazantseva, E. S.</au><au>Belova, I. N.</au><au>Onipchenko, V. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disappointing Survival Forecast for a Local Population of Androsace albana in a Random Environment</atitle><jtitle>Biology bulletin reviews</jtitle><stitle>Biol Bull Rev</stitle><date>2020</date><risdate>2020</risdate><volume>10</volume><issue>3</issue><spage>202</spage><epage>214</epage><pages>202-214</pages><issn>2079-0864</issn><eissn>2079-0872</eissn><abstract>A local population of Andropace albana , a short-lived perennial plant, has been monitored during 10 years on permanent plots laid down in an alpine lichen heath in 2009. We summarize the outcome of monitoring as a non-autonomous matrix model of stage-structured population dynamics. The model originates from a life cycle graph constructed earlier for the stages of ontogenesis and consists of 9 annual “projection” matrices that are calibrated in a unique way from the observation data. Five of the 9 matrices have their dominant eigenvalues greater than 1, i.e., give favorable forecasts for the local population survival, while the rest four have those values less than 1, i.e., give the negative forecasts. To make the resulting prediction, we apply an original concept of the pattern - geometric averaging of given nonnegative matrices and obtain the dominant eigenvalue, λ 1 ( G 9 ), of the average matrix G 9 markedly less than 1, indicating the population decline in the long term. The traditional method to forecast the local population is to estimate λ S , the stochastic growth rate of the population in a random environment formed by a random choice from the same 9 annual matrices. Assuming the choice to be independent and equiprobable, we obtain the negative result as well, yet with higher quantitative values of λ S . We associate these higher values with the artificial assumption of equal choice probability when forming the random sequence of annual matrices, each of which is indirectly reflecting the habitat conditions that have influenced the growth and development of plants during the year prior the calibration moment . This motivates the task to construct a more adequate model for choosing annual matrices, in which the probability of choice would be related to the dynamics of the real habitat factors for a given local population.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2079086420030044</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2079-0864
ispartof Biology bulletin reviews, 2020, Vol.10 (3), p.202-214
issn 2079-0864
2079-0872
language eng
recordid cdi_proquest_journals_2409214889
source SpringerNature Journals
subjects Biochemistry
Biomedical and Life Sciences
Cell Biology
Ecology
Growth rate
Life cycles
Life Sciences
Population
Population decline
Population dynamics
Stochasticity
Survival
Zoology
title Disappointing Survival Forecast for a Local Population of Androsace albana in a Random Environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T15%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disappointing%20Survival%20Forecast%20for%20a%20Local%20Population%20of%20Androsace%20albana%20in%20a%20Random%20Environment&rft.jtitle=Biology%20bulletin%20reviews&rft.au=Logofet,%20D.%20O.&rft.date=2020&rft.volume=10&rft.issue=3&rft.spage=202&rft.epage=214&rft.pages=202-214&rft.issn=2079-0864&rft.eissn=2079-0872&rft_id=info:doi/10.1134/S2079086420030044&rft_dat=%3Cproquest_cross%3E2409214889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409214889&rft_id=info:pmid/&rfr_iscdi=true