Differences in the magnon diffusion length for electrically and thermally driven magnon currents in Y3Fe5O12

Recent demonstration of efficient transport and manipulation of spin information by magnon currents have opened exciting prospects for processing information in devices. Magnon currents can be driven both electrically and thermally, even in magnetic insulators, by applying charge currents in an adja...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-05, Vol.101 (18), p.1
Hauptverfasser: Gomez-Perez, Juan M, Vélez, Saül, Hueso, Luis E, Casanova, Fèlix
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page 1
container_title Physical review. B
container_volume 101
creator Gomez-Perez, Juan M
Vélez, Saül
Hueso, Luis E
Casanova, Fèlix
description Recent demonstration of efficient transport and manipulation of spin information by magnon currents have opened exciting prospects for processing information in devices. Magnon currents can be driven both electrically and thermally, even in magnetic insulators, by applying charge currents in an adjacent metal layer. Earlier reports in thin yttrium iron garnet (YIG) films suggested that the diffusion length of magnons is independent of the biasing method, but different values were obtained in thicker films. Here, we study the magnon diffusion length for electrically and thermally driven magnon currents in the linear regime in a 2-μm-thick YIG film as a function of temperature and magnetic field. Our results show a decrease in the magnon diffusion length with magnetic field for both biasing methods and at all temperatures from 5 to 300 K, indicating that subthermal magnons dominate long-range transport. Moreover, we demonstrate that the value of the magnon diffusion length depends on the driving mechanism, suggesting that different nonequilibrium magnon distributions are biased for each method. Finally, we demonstrate that the magnon diffusion length for thermally driven magnon currents is independent of the YIG thickness and material growth conditions, confirming that this quantity is an intrinsic parameter of YIG.
doi_str_mv 10.1103/PhysRevB.101.184420
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2409214641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409214641</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-6fe01e7dcff52ad299852bcf6d9fc1946468126f2eb0cde04685e1d408c8f3303</originalsourceid><addsrcrecordid>eNo9jU9LAzEUxIMoWGo_gZeA563vJdl0c9RqVRAqogdPZZu8tFu22ZrsFvrtXeuf08wwzG8Yu0QYI4K8flkf0ivtb8cIOMZCKQEnbCCUNpkx2pz--xzO2SilDQCgBjMBM2D1XeU9RQqWEq8Cb9fEt-UqNIG7vulS1buawqpdc99ETjXZNla2rOsDL4P7HsTtMblY7Sn8rW0Xe2p7hH7IGeVzFBfszJd1otGvDtn77P5t-pg9zx-epjfP2Q5Rtpn2BEgTZ73PRemEMUUultZrZ7xFo7TSBQrtBS3BOoI-5oROQWELLyXIIbv64e5i89lRahebpouhv1wIBUZgj0D5BbZtXdo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409214641</pqid></control><display><type>article</type><title>Differences in the magnon diffusion length for electrically and thermally driven magnon currents in Y3Fe5O12</title><source>American Physical Society Journals</source><creator>Gomez-Perez, Juan M ; Vélez, Saül ; Hueso, Luis E ; Casanova, Fèlix</creator><creatorcontrib>Gomez-Perez, Juan M ; Vélez, Saül ; Hueso, Luis E ; Casanova, Fèlix</creatorcontrib><description>Recent demonstration of efficient transport and manipulation of spin information by magnon currents have opened exciting prospects for processing information in devices. Magnon currents can be driven both electrically and thermally, even in magnetic insulators, by applying charge currents in an adjacent metal layer. Earlier reports in thin yttrium iron garnet (YIG) films suggested that the diffusion length of magnons is independent of the biasing method, but different values were obtained in thicker films. Here, we study the magnon diffusion length for electrically and thermally driven magnon currents in the linear regime in a 2-μm-thick YIG film as a function of temperature and magnetic field. Our results show a decrease in the magnon diffusion length with magnetic field for both biasing methods and at all temperatures from 5 to 300 K, indicating that subthermal magnons dominate long-range transport. Moreover, we demonstrate that the value of the magnon diffusion length depends on the driving mechanism, suggesting that different nonequilibrium magnon distributions are biased for each method. Finally, we demonstrate that the magnon diffusion length for thermally driven magnon currents is independent of the YIG thickness and material growth conditions, confirming that this quantity is an intrinsic parameter of YIG.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.101.184420</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Diffusion ; Diffusion length ; Insulators ; Magnetic fields ; Magnons ; Yttrium ; Yttrium-iron garnet</subject><ispartof>Physical review. B, 2020-05, Vol.101 (18), p.1</ispartof><rights>Copyright American Physical Society May 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gomez-Perez, Juan M</creatorcontrib><creatorcontrib>Vélez, Saül</creatorcontrib><creatorcontrib>Hueso, Luis E</creatorcontrib><creatorcontrib>Casanova, Fèlix</creatorcontrib><title>Differences in the magnon diffusion length for electrically and thermally driven magnon currents in Y3Fe5O12</title><title>Physical review. B</title><description>Recent demonstration of efficient transport and manipulation of spin information by magnon currents have opened exciting prospects for processing information in devices. Magnon currents can be driven both electrically and thermally, even in magnetic insulators, by applying charge currents in an adjacent metal layer. Earlier reports in thin yttrium iron garnet (YIG) films suggested that the diffusion length of magnons is independent of the biasing method, but different values were obtained in thicker films. Here, we study the magnon diffusion length for electrically and thermally driven magnon currents in the linear regime in a 2-μm-thick YIG film as a function of temperature and magnetic field. Our results show a decrease in the magnon diffusion length with magnetic field for both biasing methods and at all temperatures from 5 to 300 K, indicating that subthermal magnons dominate long-range transport. Moreover, we demonstrate that the value of the magnon diffusion length depends on the driving mechanism, suggesting that different nonequilibrium magnon distributions are biased for each method. Finally, we demonstrate that the magnon diffusion length for thermally driven magnon currents is independent of the YIG thickness and material growth conditions, confirming that this quantity is an intrinsic parameter of YIG.</description><subject>Diffusion</subject><subject>Diffusion length</subject><subject>Insulators</subject><subject>Magnetic fields</subject><subject>Magnons</subject><subject>Yttrium</subject><subject>Yttrium-iron garnet</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9jU9LAzEUxIMoWGo_gZeA563vJdl0c9RqVRAqogdPZZu8tFu22ZrsFvrtXeuf08wwzG8Yu0QYI4K8flkf0ivtb8cIOMZCKQEnbCCUNpkx2pz--xzO2SilDQCgBjMBM2D1XeU9RQqWEq8Cb9fEt-UqNIG7vulS1buawqpdc99ETjXZNla2rOsDL4P7HsTtMblY7Sn8rW0Xe2p7hH7IGeVzFBfszJd1otGvDtn77P5t-pg9zx-epjfP2Q5Rtpn2BEgTZ73PRemEMUUultZrZ7xFo7TSBQrtBS3BOoI-5oROQWELLyXIIbv64e5i89lRahebpouhv1wIBUZgj0D5BbZtXdo</recordid><startdate>20200518</startdate><enddate>20200518</enddate><creator>Gomez-Perez, Juan M</creator><creator>Vélez, Saül</creator><creator>Hueso, Luis E</creator><creator>Casanova, Fèlix</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20200518</creationdate><title>Differences in the magnon diffusion length for electrically and thermally driven magnon currents in Y3Fe5O12</title><author>Gomez-Perez, Juan M ; Vélez, Saül ; Hueso, Luis E ; Casanova, Fèlix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-6fe01e7dcff52ad299852bcf6d9fc1946468126f2eb0cde04685e1d408c8f3303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Diffusion</topic><topic>Diffusion length</topic><topic>Insulators</topic><topic>Magnetic fields</topic><topic>Magnons</topic><topic>Yttrium</topic><topic>Yttrium-iron garnet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez-Perez, Juan M</creatorcontrib><creatorcontrib>Vélez, Saül</creatorcontrib><creatorcontrib>Hueso, Luis E</creatorcontrib><creatorcontrib>Casanova, Fèlix</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomez-Perez, Juan M</au><au>Vélez, Saül</au><au>Hueso, Luis E</au><au>Casanova, Fèlix</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differences in the magnon diffusion length for electrically and thermally driven magnon currents in Y3Fe5O12</atitle><jtitle>Physical review. B</jtitle><date>2020-05-18</date><risdate>2020</risdate><volume>101</volume><issue>18</issue><spage>1</spage><pages>1-</pages><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Recent demonstration of efficient transport and manipulation of spin information by magnon currents have opened exciting prospects for processing information in devices. Magnon currents can be driven both electrically and thermally, even in magnetic insulators, by applying charge currents in an adjacent metal layer. Earlier reports in thin yttrium iron garnet (YIG) films suggested that the diffusion length of magnons is independent of the biasing method, but different values were obtained in thicker films. Here, we study the magnon diffusion length for electrically and thermally driven magnon currents in the linear regime in a 2-μm-thick YIG film as a function of temperature and magnetic field. Our results show a decrease in the magnon diffusion length with magnetic field for both biasing methods and at all temperatures from 5 to 300 K, indicating that subthermal magnons dominate long-range transport. Moreover, we demonstrate that the value of the magnon diffusion length depends on the driving mechanism, suggesting that different nonequilibrium magnon distributions are biased for each method. Finally, we demonstrate that the magnon diffusion length for thermally driven magnon currents is independent of the YIG thickness and material growth conditions, confirming that this quantity is an intrinsic parameter of YIG.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.101.184420</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2020-05, Vol.101 (18), p.1
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2409214641
source American Physical Society Journals
subjects Diffusion
Diffusion length
Insulators
Magnetic fields
Magnons
Yttrium
Yttrium-iron garnet
title Differences in the magnon diffusion length for electrically and thermally driven magnon currents in Y3Fe5O12
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A09%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differences%20in%20the%20magnon%20diffusion%20length%20for%20electrically%20and%20thermally%20driven%20magnon%20currents%20in%20Y3Fe5O12&rft.jtitle=Physical%20review.%20B&rft.au=Gomez-Perez,%20Juan%20M&rft.date=2020-05-18&rft.volume=101&rft.issue=18&rft.spage=1&rft.pages=1-&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.101.184420&rft_dat=%3Cproquest%3E2409214641%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409214641&rft_id=info:pmid/&rfr_iscdi=true