Infinite Numerical Computing Applied to Hilbert’s, Peano’s, and Moore’s Curves

The Peano and the Hilbert curves, denoted by P and H respectively, are historically the first and some of the best known space-filling curves. They have a fractal structure, many variants (as the well-known Moore curve M or a probably new “looped” version H ¯ of H ), and a huge number of application...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2020-06, Vol.17 (3), Article 99
Hauptverfasser: Antoniotti, Luigi, Caldarola, Fabio, Maiolo, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Mediterranean journal of mathematics
container_volume 17
creator Antoniotti, Luigi
Caldarola, Fabio
Maiolo, Mario
description The Peano and the Hilbert curves, denoted by P and H respectively, are historically the first and some of the best known space-filling curves. They have a fractal structure, many variants (as the well-known Moore curve M or a probably new “looped” version H ¯ of H ), and a huge number of applications in the most diverse fields of mathematics and experimental sciences. In this paper, we employ a recently proposed computational system, allowing numerical calculations with infinite and infinitesimal numbers, to investigate the behavior of such curves and to highlight the differences with the classical treatment. In particular, we perform several types of computations and give many examples based not only on the curves H and P , but also on their d -dimensional versions H d and P d , respectively. Following our approach, it is easy to apply this new computational methodology to many other geometrical contexts, with interesting advantages such as summarizing in a single (infinite) number, representing the final result of a sequence of computations, much information both on the geometrical meaning of such a sequence and on the base geometrical structure itself.
doi_str_mv 10.1007/s00009-020-01531-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409214559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409214559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-59f1c9a68413d3f438c3cef6ae4c3e2bbd33d4c7d032af5c5c7b93196947aa7b3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaW2GLwb1IvqwhopfKzKGvLcewqVWoHO0FixzW4HichJQh2zGbeSO-9kT4Azgm-Ihjn1wkPIxGmGGEiGEHiAExIlmEkuOCHv5pnx-AkpS3GVBJGJ2C99K72dWfhQ7-zsTa6gUXYtX1X-w2ct21T2wp2AS7qprSx-3z_SJfwyWofRql9Be9DiHZ_wqKPrzadgiOnm2TPfvYUPN_erIsFWj3eLYv5ChlGZIeEdMRInc04YRVznM0MM9Zl2nLDLC3LirGKm7zCjGonjDB5KYdkJnmudV6yKbgYe9sYXnqbOrUNffTDS0U5lpRwIeTgoqPLxJBStE61sd7p-KYIVnt6aqSnBnrqm54SQ4iNoTSY_cbGv-p_Ul90qHSl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409214559</pqid></control><display><type>article</type><title>Infinite Numerical Computing Applied to Hilbert’s, Peano’s, and Moore’s Curves</title><source>SpringerLink Journals - AutoHoldings</source><creator>Antoniotti, Luigi ; Caldarola, Fabio ; Maiolo, Mario</creator><creatorcontrib>Antoniotti, Luigi ; Caldarola, Fabio ; Maiolo, Mario</creatorcontrib><description>The Peano and the Hilbert curves, denoted by P and H respectively, are historically the first and some of the best known space-filling curves. They have a fractal structure, many variants (as the well-known Moore curve M or a probably new “looped” version H ¯ of H ), and a huge number of applications in the most diverse fields of mathematics and experimental sciences. In this paper, we employ a recently proposed computational system, allowing numerical calculations with infinite and infinitesimal numbers, to investigate the behavior of such curves and to highlight the differences with the classical treatment. In particular, we perform several types of computations and give many examples based not only on the curves H and P , but also on their d -dimensional versions H d and P d , respectively. Following our approach, it is easy to apply this new computational methodology to many other geometrical contexts, with interesting advantages such as summarizing in a single (infinite) number, representing the final result of a sequence of computations, much information both on the geometrical meaning of such a sequence and on the base geometrical structure itself.</description><identifier>ISSN: 1660-5446</identifier><identifier>EISSN: 1660-5454</identifier><identifier>DOI: 10.1007/s00009-020-01531-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Hilbert curve ; Mathematics ; Mathematics and Statistics</subject><ispartof>Mediterranean journal of mathematics, 2020-06, Vol.17 (3), Article 99</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-59f1c9a68413d3f438c3cef6ae4c3e2bbd33d4c7d032af5c5c7b93196947aa7b3</citedby><cites>FETCH-LOGICAL-c319t-59f1c9a68413d3f438c3cef6ae4c3e2bbd33d4c7d032af5c5c7b93196947aa7b3</cites><orcidid>0000-0002-4011-848X ; 0000-0002-6208-1307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00009-020-01531-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00009-020-01531-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Antoniotti, Luigi</creatorcontrib><creatorcontrib>Caldarola, Fabio</creatorcontrib><creatorcontrib>Maiolo, Mario</creatorcontrib><title>Infinite Numerical Computing Applied to Hilbert’s, Peano’s, and Moore’s Curves</title><title>Mediterranean journal of mathematics</title><addtitle>Mediterr. J. Math</addtitle><description>The Peano and the Hilbert curves, denoted by P and H respectively, are historically the first and some of the best known space-filling curves. They have a fractal structure, many variants (as the well-known Moore curve M or a probably new “looped” version H ¯ of H ), and a huge number of applications in the most diverse fields of mathematics and experimental sciences. In this paper, we employ a recently proposed computational system, allowing numerical calculations with infinite and infinitesimal numbers, to investigate the behavior of such curves and to highlight the differences with the classical treatment. In particular, we perform several types of computations and give many examples based not only on the curves H and P , but also on their d -dimensional versions H d and P d , respectively. Following our approach, it is easy to apply this new computational methodology to many other geometrical contexts, with interesting advantages such as summarizing in a single (infinite) number, representing the final result of a sequence of computations, much information both on the geometrical meaning of such a sequence and on the base geometrical structure itself.</description><subject>Hilbert curve</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1660-5446</issn><issn>1660-5454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaW2GLwb1IvqwhopfKzKGvLcewqVWoHO0FixzW4HichJQh2zGbeSO-9kT4Azgm-Ihjn1wkPIxGmGGEiGEHiAExIlmEkuOCHv5pnx-AkpS3GVBJGJ2C99K72dWfhQ7-zsTa6gUXYtX1X-w2ct21T2wp2AS7qprSx-3z_SJfwyWofRql9Be9DiHZ_wqKPrzadgiOnm2TPfvYUPN_erIsFWj3eLYv5ChlGZIeEdMRInc04YRVznM0MM9Zl2nLDLC3LirGKm7zCjGonjDB5KYdkJnmudV6yKbgYe9sYXnqbOrUNffTDS0U5lpRwIeTgoqPLxJBStE61sd7p-KYIVnt6aqSnBnrqm54SQ4iNoTSY_cbGv-p_Ul90qHSl</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Antoniotti, Luigi</creator><creator>Caldarola, Fabio</creator><creator>Maiolo, Mario</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4011-848X</orcidid><orcidid>https://orcid.org/0000-0002-6208-1307</orcidid></search><sort><creationdate>20200601</creationdate><title>Infinite Numerical Computing Applied to Hilbert’s, Peano’s, and Moore’s Curves</title><author>Antoniotti, Luigi ; Caldarola, Fabio ; Maiolo, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-59f1c9a68413d3f438c3cef6ae4c3e2bbd33d4c7d032af5c5c7b93196947aa7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Hilbert curve</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antoniotti, Luigi</creatorcontrib><creatorcontrib>Caldarola, Fabio</creatorcontrib><creatorcontrib>Maiolo, Mario</creatorcontrib><collection>CrossRef</collection><jtitle>Mediterranean journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antoniotti, Luigi</au><au>Caldarola, Fabio</au><au>Maiolo, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infinite Numerical Computing Applied to Hilbert’s, Peano’s, and Moore’s Curves</atitle><jtitle>Mediterranean journal of mathematics</jtitle><stitle>Mediterr. J. Math</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>17</volume><issue>3</issue><artnum>99</artnum><issn>1660-5446</issn><eissn>1660-5454</eissn><abstract>The Peano and the Hilbert curves, denoted by P and H respectively, are historically the first and some of the best known space-filling curves. They have a fractal structure, many variants (as the well-known Moore curve M or a probably new “looped” version H ¯ of H ), and a huge number of applications in the most diverse fields of mathematics and experimental sciences. In this paper, we employ a recently proposed computational system, allowing numerical calculations with infinite and infinitesimal numbers, to investigate the behavior of such curves and to highlight the differences with the classical treatment. In particular, we perform several types of computations and give many examples based not only on the curves H and P , but also on their d -dimensional versions H d and P d , respectively. Following our approach, it is easy to apply this new computational methodology to many other geometrical contexts, with interesting advantages such as summarizing in a single (infinite) number, representing the final result of a sequence of computations, much information both on the geometrical meaning of such a sequence and on the base geometrical structure itself.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00009-020-01531-5</doi><orcidid>https://orcid.org/0000-0002-4011-848X</orcidid><orcidid>https://orcid.org/0000-0002-6208-1307</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1660-5446
ispartof Mediterranean journal of mathematics, 2020-06, Vol.17 (3), Article 99
issn 1660-5446
1660-5454
language eng
recordid cdi_proquest_journals_2409214559
source SpringerLink Journals - AutoHoldings
subjects Hilbert curve
Mathematics
Mathematics and Statistics
title Infinite Numerical Computing Applied to Hilbert’s, Peano’s, and Moore’s Curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infinite%20Numerical%20Computing%20Applied%20to%20Hilbert%E2%80%99s,%20Peano%E2%80%99s,%20and%20Moore%E2%80%99s%20Curves&rft.jtitle=Mediterranean%20journal%20of%20mathematics&rft.au=Antoniotti,%20Luigi&rft.date=2020-06-01&rft.volume=17&rft.issue=3&rft.artnum=99&rft.issn=1660-5446&rft.eissn=1660-5454&rft_id=info:doi/10.1007/s00009-020-01531-5&rft_dat=%3Cproquest_cross%3E2409214559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409214559&rft_id=info:pmid/&rfr_iscdi=true