Catalyst‐Free Synthesis of Few‐Layer Graphdiyne Using a Microwave‐Induced Temperature Gradient at a Solid/Liquid Interface
Graphdiyne (GDY), a 2D carbon allotrope, is predicted to possess high carrier mobility and an intrinsic bandgap. However, the controlled synthesis of mono‐ or few‐layer GDY with good crystallinity remains challenging because of the instability of the monomers. Herein, a rapid and catalyst‐free synth...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-06, Vol.30 (23), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Yin, Chen Li, Jiaqiang Li, Tianran Yu, Yue Kong, Ya Gao, Peng Peng, Hailin Tong, Lianming Zhang, Jin |
description | Graphdiyne (GDY), a 2D carbon allotrope, is predicted to possess high carrier mobility and an intrinsic bandgap. However, the controlled synthesis of mono‐ or few‐layer GDY with good crystallinity remains challenging because of the instability of the monomers. Herein, a rapid and catalyst‐free synthetic method is presented for few‐layer GDY involving the use of a solid/liquid interface and a microwave‐induced temperature gradient. Sodium chloride, which can absorb microwave energy, is used as the solid substrate in a nonabsorbing solvent. A temperature gradient is formed at the solid/liquid interface under microwave irradiation, facilitating the cross‐coupling reaction of monomers at the solid surface and stabilizing the monomers in the bulk solution. Few‐layer GDY with an average thickness of less than 2 nm, a field‐effect mobility of 50.1 cm2 V−1 s−1, and p‐type characteristics is successfully obtained. This wet chemical approach may be extended to the synthesis of other few‐layered 2D materials with improved quality.
In this work, a rapid and catalyst‐free method for the synthesis of few‐layer graphdiyne (GDY) at a solid/liquid interface using a microwave‐induced temperature gradient is reported. Under microwave irradiation, hexaethynylbenzene molecules at the surface of NaCl crystals are heated to form GDY by cross‐coupling, while the bulk solution is sufficiently cooled to ensure the stability of the monomers. |
doi_str_mv | 10.1002/adfm.202001396 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409149606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409149606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3546-996c1d19ac7e2bc60c3cbe91fc777658564b4d81ec62a22156da0a2c7eb062093</originalsourceid><addsrcrecordid>eNqFkEFrwjAUx8vYYM7tunNg52qStqk5iptOqOygwm4lTV5npLY1aSe9-RH2GfdJFnG44yDwwuP3e4_397xHggcEYzoUKt8NKKYYk4CzK69HGGF-gOno-vIn77fenbVbx8RxEPa840Q0ouhs8338mhoAtOzKZgNWW1TlaAoH109EBwbNjKg3SncloLXV5QcSaKGlqQ7iExw0L1UrQaEV7GowomkNnBSloWyQcA8tq0KrYaL3rVZoXjZgciHh3rvJRWHh4bf2vfX0ZTV59ZO32XwyTnwZRCHzOWeSKMKFjIFmkmEZyAw4yWUcxywaRSzMQjUiIBkVlJKIKYEFdXSGGcU86HtP57m1qfYt2CbdVq0p3cqUhpiTkDPMHDU4U-4waw3kaW30TpguJTg9pZyeUk4vKTuBn4WDLqD7h07Hz9PFn_sDzjaE6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409149606</pqid></control><display><type>article</type><title>Catalyst‐Free Synthesis of Few‐Layer Graphdiyne Using a Microwave‐Induced Temperature Gradient at a Solid/Liquid Interface</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yin, Chen ; Li, Jiaqiang ; Li, Tianran ; Yu, Yue ; Kong, Ya ; Gao, Peng ; Peng, Hailin ; Tong, Lianming ; Zhang, Jin</creator><creatorcontrib>Yin, Chen ; Li, Jiaqiang ; Li, Tianran ; Yu, Yue ; Kong, Ya ; Gao, Peng ; Peng, Hailin ; Tong, Lianming ; Zhang, Jin</creatorcontrib><description>Graphdiyne (GDY), a 2D carbon allotrope, is predicted to possess high carrier mobility and an intrinsic bandgap. However, the controlled synthesis of mono‐ or few‐layer GDY with good crystallinity remains challenging because of the instability of the monomers. Herein, a rapid and catalyst‐free synthetic method is presented for few‐layer GDY involving the use of a solid/liquid interface and a microwave‐induced temperature gradient. Sodium chloride, which can absorb microwave energy, is used as the solid substrate in a nonabsorbing solvent. A temperature gradient is formed at the solid/liquid interface under microwave irradiation, facilitating the cross‐coupling reaction of monomers at the solid surface and stabilizing the monomers in the bulk solution. Few‐layer GDY with an average thickness of less than 2 nm, a field‐effect mobility of 50.1 cm2 V−1 s−1, and p‐type characteristics is successfully obtained. This wet chemical approach may be extended to the synthesis of other few‐layered 2D materials with improved quality.
In this work, a rapid and catalyst‐free method for the synthesis of few‐layer graphdiyne (GDY) at a solid/liquid interface using a microwave‐induced temperature gradient is reported. Under microwave irradiation, hexaethynylbenzene molecules at the surface of NaCl crystals are heated to form GDY by cross‐coupling, while the bulk solution is sufficiently cooled to ensure the stability of the monomers.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202001396</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Allotropy ; Carrier mobility ; Catalysts ; catalyst‐free ; Chemical synthesis ; Cross coupling ; few‐layered ; graphdiyne ; Materials science ; microwave ; Monomers ; Sodium chloride ; Solid surfaces ; Substrates ; temperature gradient ; Temperature gradients ; Two dimensional materials</subject><ispartof>Advanced functional materials, 2020-06, Vol.30 (23), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3546-996c1d19ac7e2bc60c3cbe91fc777658564b4d81ec62a22156da0a2c7eb062093</citedby><cites>FETCH-LOGICAL-c3546-996c1d19ac7e2bc60c3cbe91fc777658564b4d81ec62a22156da0a2c7eb062093</cites><orcidid>0000-0003-3731-8859</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202001396$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202001396$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Yin, Chen</creatorcontrib><creatorcontrib>Li, Jiaqiang</creatorcontrib><creatorcontrib>Li, Tianran</creatorcontrib><creatorcontrib>Yu, Yue</creatorcontrib><creatorcontrib>Kong, Ya</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Peng, Hailin</creatorcontrib><creatorcontrib>Tong, Lianming</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><title>Catalyst‐Free Synthesis of Few‐Layer Graphdiyne Using a Microwave‐Induced Temperature Gradient at a Solid/Liquid Interface</title><title>Advanced functional materials</title><description>Graphdiyne (GDY), a 2D carbon allotrope, is predicted to possess high carrier mobility and an intrinsic bandgap. However, the controlled synthesis of mono‐ or few‐layer GDY with good crystallinity remains challenging because of the instability of the monomers. Herein, a rapid and catalyst‐free synthetic method is presented for few‐layer GDY involving the use of a solid/liquid interface and a microwave‐induced temperature gradient. Sodium chloride, which can absorb microwave energy, is used as the solid substrate in a nonabsorbing solvent. A temperature gradient is formed at the solid/liquid interface under microwave irradiation, facilitating the cross‐coupling reaction of monomers at the solid surface and stabilizing the monomers in the bulk solution. Few‐layer GDY with an average thickness of less than 2 nm, a field‐effect mobility of 50.1 cm2 V−1 s−1, and p‐type characteristics is successfully obtained. This wet chemical approach may be extended to the synthesis of other few‐layered 2D materials with improved quality.
In this work, a rapid and catalyst‐free method for the synthesis of few‐layer graphdiyne (GDY) at a solid/liquid interface using a microwave‐induced temperature gradient is reported. Under microwave irradiation, hexaethynylbenzene molecules at the surface of NaCl crystals are heated to form GDY by cross‐coupling, while the bulk solution is sufficiently cooled to ensure the stability of the monomers.</description><subject>Allotropy</subject><subject>Carrier mobility</subject><subject>Catalysts</subject><subject>catalyst‐free</subject><subject>Chemical synthesis</subject><subject>Cross coupling</subject><subject>few‐layered</subject><subject>graphdiyne</subject><subject>Materials science</subject><subject>microwave</subject><subject>Monomers</subject><subject>Sodium chloride</subject><subject>Solid surfaces</subject><subject>Substrates</subject><subject>temperature gradient</subject><subject>Temperature gradients</subject><subject>Two dimensional materials</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEFrwjAUx8vYYM7tunNg52qStqk5iptOqOygwm4lTV5npLY1aSe9-RH2GfdJFnG44yDwwuP3e4_397xHggcEYzoUKt8NKKYYk4CzK69HGGF-gOno-vIn77fenbVbx8RxEPa840Q0ouhs8338mhoAtOzKZgNWW1TlaAoH109EBwbNjKg3SncloLXV5QcSaKGlqQ7iExw0L1UrQaEV7GowomkNnBSloWyQcA8tq0KrYaL3rVZoXjZgciHh3rvJRWHh4bf2vfX0ZTV59ZO32XwyTnwZRCHzOWeSKMKFjIFmkmEZyAw4yWUcxywaRSzMQjUiIBkVlJKIKYEFdXSGGcU86HtP57m1qfYt2CbdVq0p3cqUhpiTkDPMHDU4U-4waw3kaW30TpguJTg9pZyeUk4vKTuBn4WDLqD7h07Hz9PFn_sDzjaE6A</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Yin, Chen</creator><creator>Li, Jiaqiang</creator><creator>Li, Tianran</creator><creator>Yu, Yue</creator><creator>Kong, Ya</creator><creator>Gao, Peng</creator><creator>Peng, Hailin</creator><creator>Tong, Lianming</creator><creator>Zhang, Jin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3731-8859</orcidid></search><sort><creationdate>20200601</creationdate><title>Catalyst‐Free Synthesis of Few‐Layer Graphdiyne Using a Microwave‐Induced Temperature Gradient at a Solid/Liquid Interface</title><author>Yin, Chen ; Li, Jiaqiang ; Li, Tianran ; Yu, Yue ; Kong, Ya ; Gao, Peng ; Peng, Hailin ; Tong, Lianming ; Zhang, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3546-996c1d19ac7e2bc60c3cbe91fc777658564b4d81ec62a22156da0a2c7eb062093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Allotropy</topic><topic>Carrier mobility</topic><topic>Catalysts</topic><topic>catalyst‐free</topic><topic>Chemical synthesis</topic><topic>Cross coupling</topic><topic>few‐layered</topic><topic>graphdiyne</topic><topic>Materials science</topic><topic>microwave</topic><topic>Monomers</topic><topic>Sodium chloride</topic><topic>Solid surfaces</topic><topic>Substrates</topic><topic>temperature gradient</topic><topic>Temperature gradients</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Chen</creatorcontrib><creatorcontrib>Li, Jiaqiang</creatorcontrib><creatorcontrib>Li, Tianran</creatorcontrib><creatorcontrib>Yu, Yue</creatorcontrib><creatorcontrib>Kong, Ya</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Peng, Hailin</creatorcontrib><creatorcontrib>Tong, Lianming</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Chen</au><au>Li, Jiaqiang</au><au>Li, Tianran</au><au>Yu, Yue</au><au>Kong, Ya</au><au>Gao, Peng</au><au>Peng, Hailin</au><au>Tong, Lianming</au><au>Zhang, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalyst‐Free Synthesis of Few‐Layer Graphdiyne Using a Microwave‐Induced Temperature Gradient at a Solid/Liquid Interface</atitle><jtitle>Advanced functional materials</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>30</volume><issue>23</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Graphdiyne (GDY), a 2D carbon allotrope, is predicted to possess high carrier mobility and an intrinsic bandgap. However, the controlled synthesis of mono‐ or few‐layer GDY with good crystallinity remains challenging because of the instability of the monomers. Herein, a rapid and catalyst‐free synthetic method is presented for few‐layer GDY involving the use of a solid/liquid interface and a microwave‐induced temperature gradient. Sodium chloride, which can absorb microwave energy, is used as the solid substrate in a nonabsorbing solvent. A temperature gradient is formed at the solid/liquid interface under microwave irradiation, facilitating the cross‐coupling reaction of monomers at the solid surface and stabilizing the monomers in the bulk solution. Few‐layer GDY with an average thickness of less than 2 nm, a field‐effect mobility of 50.1 cm2 V−1 s−1, and p‐type characteristics is successfully obtained. This wet chemical approach may be extended to the synthesis of other few‐layered 2D materials with improved quality.
In this work, a rapid and catalyst‐free method for the synthesis of few‐layer graphdiyne (GDY) at a solid/liquid interface using a microwave‐induced temperature gradient is reported. Under microwave irradiation, hexaethynylbenzene molecules at the surface of NaCl crystals are heated to form GDY by cross‐coupling, while the bulk solution is sufficiently cooled to ensure the stability of the monomers.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202001396</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3731-8859</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-06, Vol.30 (23), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2409149606 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Allotropy Carrier mobility Catalysts catalyst‐free Chemical synthesis Cross coupling few‐layered graphdiyne Materials science microwave Monomers Sodium chloride Solid surfaces Substrates temperature gradient Temperature gradients Two dimensional materials |
title | Catalyst‐Free Synthesis of Few‐Layer Graphdiyne Using a Microwave‐Induced Temperature Gradient at a Solid/Liquid Interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalyst%E2%80%90Free%20Synthesis%20of%20Few%E2%80%90Layer%20Graphdiyne%20Using%20a%20Microwave%E2%80%90Induced%20Temperature%20Gradient%20at%20a%20Solid/Liquid%20Interface&rft.jtitle=Advanced%20functional%20materials&rft.au=Yin,%20Chen&rft.date=2020-06-01&rft.volume=30&rft.issue=23&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202001396&rft_dat=%3Cproquest_cross%3E2409149606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409149606&rft_id=info:pmid/&rfr_iscdi=true |