Influence of growth rate and orientation on thermoelectric properties in Mg3Sb2 crystal

Ag-doped Mg 3 Sb 2 single crystal was successfully grown via a directional solidification method with high temperature gradient. The influence of microstructure, growth rate, and orientation on the thermoelectric properties was investigated. It was revealed that the changed growth rate results in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2020-06, Vol.31 (12), p.9773-9782
Hauptverfasser: Li, Xin, Xie, Hui, Yang, Bin, Zhong, Hong, Li, Shuangming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9782
container_issue 12
container_start_page 9773
container_title Journal of materials science. Materials in electronics
container_volume 31
creator Li, Xin
Xie, Hui
Yang, Bin
Zhong, Hong
Li, Shuangming
description Ag-doped Mg 3 Sb 2 single crystal was successfully grown via a directional solidification method with high temperature gradient. The influence of microstructure, growth rate, and orientation on the thermoelectric properties was investigated. It was revealed that the changed growth rate results in a slight adjustment of chemical composition in Mg 3 Sb 2 crystal. The crystal exhibits better thermoelectric performance at the rate of 18 mm h −1 . The Seebeck coefficient ( S ) and electrical conductivity ( σ ) are anisotropic in [001] and [100] orientation. The thermal conductivity exhibits isotropic property. The top value of Seebeck coefficient is 267 µV K −1 in the [001] orientation, which is dramatically improved compared with previous results. As a consequence, the maximum value of the power factor for the [001]-oriented crystal is 1.21 m Wm −1 K −2 at v  = 18 mm h −1 , which results in an elevated ZT of 0.68. This result is verified well by Hall testing and density functional theory calculations.
doi_str_mv 10.1007/s10854-020-03522-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409111218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409111218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b1760189fdd2bceace86ef7bc6cce4951e25030b2c04708af6f8529bae4e4fbb3</originalsourceid><addsrcrecordid>eNp9kEtLQzEQhYMoWB9_wFXAdXSSm_taSvFRqLhQ0V1I0kl7y-1NTVKk_97oFdwJA7OYc84cPkIuOFxxgPo6cmhKyUAAg6IUgskDMuFlXTDZiPdDMoG2rJnMl2NyEuMaACpZNBPyNhtcv8PBIvWOLoP_TCsadEKqhwX1ocMh6dT5geZJKwwbjz3aFDpLt8FvMaQOI-0G-rgsno2gNuxj0v0ZOXK6j3j-u0_J693ty_SBzZ_uZ9ObObMFbxMzvK6AN61bLISxqC02Fbra2MpalG3JUZRQgBEWZA2NdpVrStEajRKlM6Y4JZdjbi7zscOY1NrvwpBfKiGh5ZwL3mSVGFU2-BgDOrUN3UaHveKgvgGqEaDKANUPQCWzqRhNMYuHJYa_6H9cX9EBdLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409111218</pqid></control><display><type>article</type><title>Influence of growth rate and orientation on thermoelectric properties in Mg3Sb2 crystal</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Xin ; Xie, Hui ; Yang, Bin ; Zhong, Hong ; Li, Shuangming</creator><creatorcontrib>Li, Xin ; Xie, Hui ; Yang, Bin ; Zhong, Hong ; Li, Shuangming</creatorcontrib><description>Ag-doped Mg 3 Sb 2 single crystal was successfully grown via a directional solidification method with high temperature gradient. The influence of microstructure, growth rate, and orientation on the thermoelectric properties was investigated. It was revealed that the changed growth rate results in a slight adjustment of chemical composition in Mg 3 Sb 2 crystal. The crystal exhibits better thermoelectric performance at the rate of 18 mm h −1 . The Seebeck coefficient ( S ) and electrical conductivity ( σ ) are anisotropic in [001] and [100] orientation. The thermal conductivity exhibits isotropic property. The top value of Seebeck coefficient is 267 µV K −1 in the [001] orientation, which is dramatically improved compared with previous results. As a consequence, the maximum value of the power factor for the [001]-oriented crystal is 1.21 m Wm −1 K −2 at v  = 18 mm h −1 , which results in an elevated ZT of 0.68. This result is verified well by Hall testing and density functional theory calculations.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-03522-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Characterization and Evaluation of Materials ; Chemical composition ; Chemistry and Materials Science ; Crystal growth ; Crystal structure ; Density functional theory ; Directional solidification ; Electrical resistivity ; Heat conductivity ; High temperature ; Hot pressing ; Materials Science ; Microstructure ; Optical and Electronic Materials ; Orientation ; Power factor ; Seebeck effect ; Silver ; Single crystals ; Temperature gradients ; Thermal conductivity ; Thermoelectricity</subject><ispartof>Journal of materials science. Materials in electronics, 2020-06, Vol.31 (12), p.9773-9782</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b1760189fdd2bceace86ef7bc6cce4951e25030b2c04708af6f8529bae4e4fbb3</citedby><cites>FETCH-LOGICAL-c319t-b1760189fdd2bceace86ef7bc6cce4951e25030b2c04708af6f8529bae4e4fbb3</cites><orcidid>0000-0001-8884-095X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-020-03522-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-020-03522-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Xie, Hui</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Zhong, Hong</creatorcontrib><creatorcontrib>Li, Shuangming</creatorcontrib><title>Influence of growth rate and orientation on thermoelectric properties in Mg3Sb2 crystal</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Ag-doped Mg 3 Sb 2 single crystal was successfully grown via a directional solidification method with high temperature gradient. The influence of microstructure, growth rate, and orientation on the thermoelectric properties was investigated. It was revealed that the changed growth rate results in a slight adjustment of chemical composition in Mg 3 Sb 2 crystal. The crystal exhibits better thermoelectric performance at the rate of 18 mm h −1 . The Seebeck coefficient ( S ) and electrical conductivity ( σ ) are anisotropic in [001] and [100] orientation. The thermal conductivity exhibits isotropic property. The top value of Seebeck coefficient is 267 µV K −1 in the [001] orientation, which is dramatically improved compared with previous results. As a consequence, the maximum value of the power factor for the [001]-oriented crystal is 1.21 m Wm −1 K −2 at v  = 18 mm h −1 , which results in an elevated ZT of 0.68. This result is verified well by Hall testing and density functional theory calculations.</description><subject>Alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical composition</subject><subject>Chemistry and Materials Science</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Density functional theory</subject><subject>Directional solidification</subject><subject>Electrical resistivity</subject><subject>Heat conductivity</subject><subject>High temperature</subject><subject>Hot pressing</subject><subject>Materials Science</subject><subject>Microstructure</subject><subject>Optical and Electronic Materials</subject><subject>Orientation</subject><subject>Power factor</subject><subject>Seebeck effect</subject><subject>Silver</subject><subject>Single crystals</subject><subject>Temperature gradients</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLQzEQhYMoWB9_wFXAdXSSm_taSvFRqLhQ0V1I0kl7y-1NTVKk_97oFdwJA7OYc84cPkIuOFxxgPo6cmhKyUAAg6IUgskDMuFlXTDZiPdDMoG2rJnMl2NyEuMaACpZNBPyNhtcv8PBIvWOLoP_TCsadEKqhwX1ocMh6dT5geZJKwwbjz3aFDpLt8FvMaQOI-0G-rgsno2gNuxj0v0ZOXK6j3j-u0_J693ty_SBzZ_uZ9ObObMFbxMzvK6AN61bLISxqC02Fbra2MpalG3JUZRQgBEWZA2NdpVrStEajRKlM6Y4JZdjbi7zscOY1NrvwpBfKiGh5ZwL3mSVGFU2-BgDOrUN3UaHveKgvgGqEaDKANUPQCWzqRhNMYuHJYa_6H9cX9EBdLQ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Li, Xin</creator><creator>Xie, Hui</creator><creator>Yang, Bin</creator><creator>Zhong, Hong</creator><creator>Li, Shuangming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-8884-095X</orcidid></search><sort><creationdate>20200601</creationdate><title>Influence of growth rate and orientation on thermoelectric properties in Mg3Sb2 crystal</title><author>Li, Xin ; Xie, Hui ; Yang, Bin ; Zhong, Hong ; Li, Shuangming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b1760189fdd2bceace86ef7bc6cce4951e25030b2c04708af6f8529bae4e4fbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical composition</topic><topic>Chemistry and Materials Science</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Density functional theory</topic><topic>Directional solidification</topic><topic>Electrical resistivity</topic><topic>Heat conductivity</topic><topic>High temperature</topic><topic>Hot pressing</topic><topic>Materials Science</topic><topic>Microstructure</topic><topic>Optical and Electronic Materials</topic><topic>Orientation</topic><topic>Power factor</topic><topic>Seebeck effect</topic><topic>Silver</topic><topic>Single crystals</topic><topic>Temperature gradients</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Xie, Hui</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Zhong, Hong</creatorcontrib><creatorcontrib>Li, Shuangming</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xin</au><au>Xie, Hui</au><au>Yang, Bin</au><au>Zhong, Hong</au><au>Li, Shuangming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of growth rate and orientation on thermoelectric properties in Mg3Sb2 crystal</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>31</volume><issue>12</issue><spage>9773</spage><epage>9782</epage><pages>9773-9782</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Ag-doped Mg 3 Sb 2 single crystal was successfully grown via a directional solidification method with high temperature gradient. The influence of microstructure, growth rate, and orientation on the thermoelectric properties was investigated. It was revealed that the changed growth rate results in a slight adjustment of chemical composition in Mg 3 Sb 2 crystal. The crystal exhibits better thermoelectric performance at the rate of 18 mm h −1 . The Seebeck coefficient ( S ) and electrical conductivity ( σ ) are anisotropic in [001] and [100] orientation. The thermal conductivity exhibits isotropic property. The top value of Seebeck coefficient is 267 µV K −1 in the [001] orientation, which is dramatically improved compared with previous results. As a consequence, the maximum value of the power factor for the [001]-oriented crystal is 1.21 m Wm −1 K −2 at v  = 18 mm h −1 , which results in an elevated ZT of 0.68. This result is verified well by Hall testing and density functional theory calculations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-03522-4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8884-095X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2020-06, Vol.31 (12), p.9773-9782
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2409111218
source SpringerLink Journals - AutoHoldings
subjects Alloys
Characterization and Evaluation of Materials
Chemical composition
Chemistry and Materials Science
Crystal growth
Crystal structure
Density functional theory
Directional solidification
Electrical resistivity
Heat conductivity
High temperature
Hot pressing
Materials Science
Microstructure
Optical and Electronic Materials
Orientation
Power factor
Seebeck effect
Silver
Single crystals
Temperature gradients
Thermal conductivity
Thermoelectricity
title Influence of growth rate and orientation on thermoelectric properties in Mg3Sb2 crystal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A41%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20growth%20rate%20and%20orientation%20on%20thermoelectric%20properties%20in%20Mg3Sb2%20crystal&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Li,%20Xin&rft.date=2020-06-01&rft.volume=31&rft.issue=12&rft.spage=9773&rft.epage=9782&rft.pages=9773-9782&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-03522-4&rft_dat=%3Cproquest_cross%3E2409111218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409111218&rft_id=info:pmid/&rfr_iscdi=true