Influence of growth rate and orientation on thermoelectric properties in Mg3Sb2 crystal
Ag-doped Mg 3 Sb 2 single crystal was successfully grown via a directional solidification method with high temperature gradient. The influence of microstructure, growth rate, and orientation on the thermoelectric properties was investigated. It was revealed that the changed growth rate results in a...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2020-06, Vol.31 (12), p.9773-9782 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9782 |
---|---|
container_issue | 12 |
container_start_page | 9773 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 31 |
creator | Li, Xin Xie, Hui Yang, Bin Zhong, Hong Li, Shuangming |
description | Ag-doped Mg
3
Sb
2
single crystal was successfully grown via a directional solidification method with high temperature gradient. The influence of microstructure, growth rate, and orientation on the thermoelectric properties was investigated. It was revealed that the changed growth rate results in a slight adjustment of chemical composition in Mg
3
Sb
2
crystal. The crystal exhibits better thermoelectric performance at the rate of 18 mm h
−1
. The Seebeck coefficient (
S
) and electrical conductivity (
σ
) are anisotropic in [001] and [100] orientation. The thermal conductivity exhibits isotropic property. The top value of Seebeck coefficient is 267 µV K
−1
in the [001] orientation, which is dramatically improved compared with previous results. As a consequence, the maximum value of the power factor for the [001]-oriented crystal is 1.21 m Wm
−1
K
−2
at
v
= 18 mm h
−1
, which results in an elevated
ZT
of 0.68. This result is verified well by Hall testing and density functional theory calculations. |
doi_str_mv | 10.1007/s10854-020-03522-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409111218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409111218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b1760189fdd2bceace86ef7bc6cce4951e25030b2c04708af6f8529bae4e4fbb3</originalsourceid><addsrcrecordid>eNp9kEtLQzEQhYMoWB9_wFXAdXSSm_taSvFRqLhQ0V1I0kl7y-1NTVKk_97oFdwJA7OYc84cPkIuOFxxgPo6cmhKyUAAg6IUgskDMuFlXTDZiPdDMoG2rJnMl2NyEuMaACpZNBPyNhtcv8PBIvWOLoP_TCsadEKqhwX1ocMh6dT5geZJKwwbjz3aFDpLt8FvMaQOI-0G-rgsno2gNuxj0v0ZOXK6j3j-u0_J693ty_SBzZ_uZ9ObObMFbxMzvK6AN61bLISxqC02Fbra2MpalG3JUZRQgBEWZA2NdpVrStEajRKlM6Y4JZdjbi7zscOY1NrvwpBfKiGh5ZwL3mSVGFU2-BgDOrUN3UaHveKgvgGqEaDKANUPQCWzqRhNMYuHJYa_6H9cX9EBdLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409111218</pqid></control><display><type>article</type><title>Influence of growth rate and orientation on thermoelectric properties in Mg3Sb2 crystal</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Xin ; Xie, Hui ; Yang, Bin ; Zhong, Hong ; Li, Shuangming</creator><creatorcontrib>Li, Xin ; Xie, Hui ; Yang, Bin ; Zhong, Hong ; Li, Shuangming</creatorcontrib><description>Ag-doped Mg
3
Sb
2
single crystal was successfully grown via a directional solidification method with high temperature gradient. The influence of microstructure, growth rate, and orientation on the thermoelectric properties was investigated. It was revealed that the changed growth rate results in a slight adjustment of chemical composition in Mg
3
Sb
2
crystal. The crystal exhibits better thermoelectric performance at the rate of 18 mm h
−1
. The Seebeck coefficient (
S
) and electrical conductivity (
σ
) are anisotropic in [001] and [100] orientation. The thermal conductivity exhibits isotropic property. The top value of Seebeck coefficient is 267 µV K
−1
in the [001] orientation, which is dramatically improved compared with previous results. As a consequence, the maximum value of the power factor for the [001]-oriented crystal is 1.21 m Wm
−1
K
−2
at
v
= 18 mm h
−1
, which results in an elevated
ZT
of 0.68. This result is verified well by Hall testing and density functional theory calculations.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-03522-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Characterization and Evaluation of Materials ; Chemical composition ; Chemistry and Materials Science ; Crystal growth ; Crystal structure ; Density functional theory ; Directional solidification ; Electrical resistivity ; Heat conductivity ; High temperature ; Hot pressing ; Materials Science ; Microstructure ; Optical and Electronic Materials ; Orientation ; Power factor ; Seebeck effect ; Silver ; Single crystals ; Temperature gradients ; Thermal conductivity ; Thermoelectricity</subject><ispartof>Journal of materials science. Materials in electronics, 2020-06, Vol.31 (12), p.9773-9782</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b1760189fdd2bceace86ef7bc6cce4951e25030b2c04708af6f8529bae4e4fbb3</citedby><cites>FETCH-LOGICAL-c319t-b1760189fdd2bceace86ef7bc6cce4951e25030b2c04708af6f8529bae4e4fbb3</cites><orcidid>0000-0001-8884-095X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-020-03522-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-020-03522-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Xie, Hui</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Zhong, Hong</creatorcontrib><creatorcontrib>Li, Shuangming</creatorcontrib><title>Influence of growth rate and orientation on thermoelectric properties in Mg3Sb2 crystal</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Ag-doped Mg
3
Sb
2
single crystal was successfully grown via a directional solidification method with high temperature gradient. The influence of microstructure, growth rate, and orientation on the thermoelectric properties was investigated. It was revealed that the changed growth rate results in a slight adjustment of chemical composition in Mg
3
Sb
2
crystal. The crystal exhibits better thermoelectric performance at the rate of 18 mm h
−1
. The Seebeck coefficient (
S
) and electrical conductivity (
σ
) are anisotropic in [001] and [100] orientation. The thermal conductivity exhibits isotropic property. The top value of Seebeck coefficient is 267 µV K
−1
in the [001] orientation, which is dramatically improved compared with previous results. As a consequence, the maximum value of the power factor for the [001]-oriented crystal is 1.21 m Wm
−1
K
−2
at
v
= 18 mm h
−1
, which results in an elevated
ZT
of 0.68. This result is verified well by Hall testing and density functional theory calculations.</description><subject>Alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical composition</subject><subject>Chemistry and Materials Science</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Density functional theory</subject><subject>Directional solidification</subject><subject>Electrical resistivity</subject><subject>Heat conductivity</subject><subject>High temperature</subject><subject>Hot pressing</subject><subject>Materials Science</subject><subject>Microstructure</subject><subject>Optical and Electronic Materials</subject><subject>Orientation</subject><subject>Power factor</subject><subject>Seebeck effect</subject><subject>Silver</subject><subject>Single crystals</subject><subject>Temperature gradients</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLQzEQhYMoWB9_wFXAdXSSm_taSvFRqLhQ0V1I0kl7y-1NTVKk_97oFdwJA7OYc84cPkIuOFxxgPo6cmhKyUAAg6IUgskDMuFlXTDZiPdDMoG2rJnMl2NyEuMaACpZNBPyNhtcv8PBIvWOLoP_TCsadEKqhwX1ocMh6dT5geZJKwwbjz3aFDpLt8FvMaQOI-0G-rgsno2gNuxj0v0ZOXK6j3j-u0_J693ty_SBzZ_uZ9ObObMFbxMzvK6AN61bLISxqC02Fbra2MpalG3JUZRQgBEWZA2NdpVrStEajRKlM6Y4JZdjbi7zscOY1NrvwpBfKiGh5ZwL3mSVGFU2-BgDOrUN3UaHveKgvgGqEaDKANUPQCWzqRhNMYuHJYa_6H9cX9EBdLQ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Li, Xin</creator><creator>Xie, Hui</creator><creator>Yang, Bin</creator><creator>Zhong, Hong</creator><creator>Li, Shuangming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-8884-095X</orcidid></search><sort><creationdate>20200601</creationdate><title>Influence of growth rate and orientation on thermoelectric properties in Mg3Sb2 crystal</title><author>Li, Xin ; Xie, Hui ; Yang, Bin ; Zhong, Hong ; Li, Shuangming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b1760189fdd2bceace86ef7bc6cce4951e25030b2c04708af6f8529bae4e4fbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical composition</topic><topic>Chemistry and Materials Science</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Density functional theory</topic><topic>Directional solidification</topic><topic>Electrical resistivity</topic><topic>Heat conductivity</topic><topic>High temperature</topic><topic>Hot pressing</topic><topic>Materials Science</topic><topic>Microstructure</topic><topic>Optical and Electronic Materials</topic><topic>Orientation</topic><topic>Power factor</topic><topic>Seebeck effect</topic><topic>Silver</topic><topic>Single crystals</topic><topic>Temperature gradients</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Xie, Hui</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Zhong, Hong</creatorcontrib><creatorcontrib>Li, Shuangming</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xin</au><au>Xie, Hui</au><au>Yang, Bin</au><au>Zhong, Hong</au><au>Li, Shuangming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of growth rate and orientation on thermoelectric properties in Mg3Sb2 crystal</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>31</volume><issue>12</issue><spage>9773</spage><epage>9782</epage><pages>9773-9782</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Ag-doped Mg
3
Sb
2
single crystal was successfully grown via a directional solidification method with high temperature gradient. The influence of microstructure, growth rate, and orientation on the thermoelectric properties was investigated. It was revealed that the changed growth rate results in a slight adjustment of chemical composition in Mg
3
Sb
2
crystal. The crystal exhibits better thermoelectric performance at the rate of 18 mm h
−1
. The Seebeck coefficient (
S
) and electrical conductivity (
σ
) are anisotropic in [001] and [100] orientation. The thermal conductivity exhibits isotropic property. The top value of Seebeck coefficient is 267 µV K
−1
in the [001] orientation, which is dramatically improved compared with previous results. As a consequence, the maximum value of the power factor for the [001]-oriented crystal is 1.21 m Wm
−1
K
−2
at
v
= 18 mm h
−1
, which results in an elevated
ZT
of 0.68. This result is verified well by Hall testing and density functional theory calculations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-03522-4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8884-095X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2020-06, Vol.31 (12), p.9773-9782 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2409111218 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alloys Characterization and Evaluation of Materials Chemical composition Chemistry and Materials Science Crystal growth Crystal structure Density functional theory Directional solidification Electrical resistivity Heat conductivity High temperature Hot pressing Materials Science Microstructure Optical and Electronic Materials Orientation Power factor Seebeck effect Silver Single crystals Temperature gradients Thermal conductivity Thermoelectricity |
title | Influence of growth rate and orientation on thermoelectric properties in Mg3Sb2 crystal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A41%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20growth%20rate%20and%20orientation%20on%20thermoelectric%20properties%20in%20Mg3Sb2%20crystal&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Li,%20Xin&rft.date=2020-06-01&rft.volume=31&rft.issue=12&rft.spage=9773&rft.epage=9782&rft.pages=9773-9782&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-03522-4&rft_dat=%3Cproquest_cross%3E2409111218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409111218&rft_id=info:pmid/&rfr_iscdi=true |