Reptile responses to anthropogenic habitat modification: A global meta‐analysis
Aim The aim was to determine how reptile populations respond to anthropogenic habitat modification and determine whether species traits and environmental factors influence such responses. Location Global. Time period 1981–2018. Major taxa studied Squamata. Methods We compiled a database of 56 studie...
Gespeichert in:
Veröffentlicht in: | Global ecology and biogeography 2020-07, Vol.29 (7), p.1265-1279 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1279 |
---|---|
container_issue | 7 |
container_start_page | 1265 |
container_title | Global ecology and biogeography |
container_volume | 29 |
creator | Doherty, Tim S. Balouch, Sara Bell, Kristian Burns, Thomas J. Feldman, Anat Fist, Charles Garvey, Timothy F. Jessop, Tim S. Meiri, Shai Driscoll, Don A. McGill, Brian |
description | Aim
The aim was to determine how reptile populations respond to anthropogenic habitat modification and determine whether species traits and environmental factors influence such responses.
Location
Global.
Time period
1981–2018.
Major taxa studied
Squamata.
Methods
We compiled a database of 56 studies reporting how habitat modification affects reptile abundance and calculated standardized mean differences in abundance (Hedges’ g). We used Bayesian meta‐analytical models to test whether responses to habitat modification depended on body size, clutch size, reproductive mode, habitat specialization, range size, disturbance type, vegetation type, temperature and precipitation.
Results
Based on 815 effect sizes from 376 species, we found an overall negative effect of habitat modification on reptile abundance (mean Hedges’ g = −0.43, 95% credible intervals = −0.61 to −0.26). Reptile abundance was, on average, one‐third lower in modified compared with unmodified habitats. Small range sizes and small clutch sizes were associated with more negative responses to habitat modification, although the responses were weak and the credible intervals overlapped zero. We detected no effects of body size, habitat specialization, reproductive mode (egg‐laying or live‐bearing), temperature or precipitation. Some families exhibited more negative responses than others, although overall there was no phylogenetic signal in the data. Mining had the most negative impacts on reptile abundance, followed by agriculture, grazing, plantations and patch size reduction, whereas the mean effect of logging was neutral.
Main conclusions
Habitat modification is a key cause of reptile population declines, although there is variability in responses both within and between species, families and vegetation types. The effect of disturbance type appeared to be related to the intensity of habitat modification. Ongoing development of environmentally sustainable practices that ameliorate anthropogenic impacts is urgently needed to prevent declines in reptile populations. |
doi_str_mv | 10.1111/geb.13091 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2408857613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2408857613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2971-a4f38984a11c181b39f1d424b63c019457b597343bc16c42d0577d13accb6b593</originalsourceid><addsrcrecordid>eNp1kM9KAzEQh4MoWKsH3yDgycO2mU32n7daahUKoih4C0k226ZsN2uSInvzEXxGn8TVFW_OZQZ-3wzDh9A5kAn0NV1rOQFKCjhAI2BpGuUxzQ__5vjlGJ14vyWEJCxJR-jhUbfB1Bo77VvbeO1xsFg0YeNsa9e6MQpvhDRBBLyzpamMEsHY5grP8Lq2UtR4p4P4fP8Qjag7b_wpOqpE7fXZbx-j55vF0_w2Wt0v7-azVaTiIoNIsIrmRc4EgIIcJC0qKFnMZEoVgYIlmUyKjDIqFaSKxSVJsqwEKpSSaR_RMboY7rbOvu61D3xr965_wvOYkTxPshRoT10OlHLWe6cr3jqzE67jQPi3Md4b4z_GenY6sG-9kO5_kC8X18PGF8aJbSs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408857613</pqid></control><display><type>article</type><title>Reptile responses to anthropogenic habitat modification: A global meta‐analysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Doherty, Tim S. ; Balouch, Sara ; Bell, Kristian ; Burns, Thomas J. ; Feldman, Anat ; Fist, Charles ; Garvey, Timothy F. ; Jessop, Tim S. ; Meiri, Shai ; Driscoll, Don A. ; McGill, Brian</creator><contributor>McGill, Brian</contributor><creatorcontrib>Doherty, Tim S. ; Balouch, Sara ; Bell, Kristian ; Burns, Thomas J. ; Feldman, Anat ; Fist, Charles ; Garvey, Timothy F. ; Jessop, Tim S. ; Meiri, Shai ; Driscoll, Don A. ; McGill, Brian ; McGill, Brian</creatorcontrib><description>Aim
The aim was to determine how reptile populations respond to anthropogenic habitat modification and determine whether species traits and environmental factors influence such responses.
Location
Global.
Time period
1981–2018.
Major taxa studied
Squamata.
Methods
We compiled a database of 56 studies reporting how habitat modification affects reptile abundance and calculated standardized mean differences in abundance (Hedges’ g). We used Bayesian meta‐analytical models to test whether responses to habitat modification depended on body size, clutch size, reproductive mode, habitat specialization, range size, disturbance type, vegetation type, temperature and precipitation.
Results
Based on 815 effect sizes from 376 species, we found an overall negative effect of habitat modification on reptile abundance (mean Hedges’ g = −0.43, 95% credible intervals = −0.61 to −0.26). Reptile abundance was, on average, one‐third lower in modified compared with unmodified habitats. Small range sizes and small clutch sizes were associated with more negative responses to habitat modification, although the responses were weak and the credible intervals overlapped zero. We detected no effects of body size, habitat specialization, reproductive mode (egg‐laying or live‐bearing), temperature or precipitation. Some families exhibited more negative responses than others, although overall there was no phylogenetic signal in the data. Mining had the most negative impacts on reptile abundance, followed by agriculture, grazing, plantations and patch size reduction, whereas the mean effect of logging was neutral.
Main conclusions
Habitat modification is a key cause of reptile population declines, although there is variability in responses both within and between species, families and vegetation types. The effect of disturbance type appeared to be related to the intensity of habitat modification. Ongoing development of environmentally sustainable practices that ameliorate anthropogenic impacts is urgently needed to prevent declines in reptile populations.</description><identifier>ISSN: 1466-822X</identifier><identifier>EISSN: 1466-8238</identifier><identifier>DOI: 10.1111/geb.13091</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Abundance ; agricultural intensification ; Anthropogenic factors ; Bayesian analysis ; Body size ; Clutch size ; Data mining ; deforestation ; Disturbance ; ecological disturbance ; Environmental factors ; extinction risk ; habitat modification ; Habitats ; Human influences ; Intervals ; land‐use change ; lizards ; Mathematical models ; Meta-analysis ; Phylogeny ; Population decline ; Populations ; Precipitation ; Reptiles ; Size reduction ; snakes ; Specialization ; Species ; Squamata ; Sustainable development ; Sustainable practices ; Temperature ; Vegetation ; Vegetation type</subject><ispartof>Global ecology and biogeography, 2020-07, Vol.29 (7), p.1265-1279</ispartof><rights>2020 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2971-a4f38984a11c181b39f1d424b63c019457b597343bc16c42d0577d13accb6b593</citedby><cites>FETCH-LOGICAL-c2971-a4f38984a11c181b39f1d424b63c019457b597343bc16c42d0577d13accb6b593</cites><orcidid>0000-0002-1560-5235 ; 0000-0002-1857-6257 ; 0000-0001-7745-0251 ; 0000-0003-3839-6330 ; 0000-0002-7712-4373</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgeb.13091$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgeb.13091$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><contributor>McGill, Brian</contributor><creatorcontrib>Doherty, Tim S.</creatorcontrib><creatorcontrib>Balouch, Sara</creatorcontrib><creatorcontrib>Bell, Kristian</creatorcontrib><creatorcontrib>Burns, Thomas J.</creatorcontrib><creatorcontrib>Feldman, Anat</creatorcontrib><creatorcontrib>Fist, Charles</creatorcontrib><creatorcontrib>Garvey, Timothy F.</creatorcontrib><creatorcontrib>Jessop, Tim S.</creatorcontrib><creatorcontrib>Meiri, Shai</creatorcontrib><creatorcontrib>Driscoll, Don A.</creatorcontrib><creatorcontrib>McGill, Brian</creatorcontrib><title>Reptile responses to anthropogenic habitat modification: A global meta‐analysis</title><title>Global ecology and biogeography</title><description>Aim
The aim was to determine how reptile populations respond to anthropogenic habitat modification and determine whether species traits and environmental factors influence such responses.
Location
Global.
Time period
1981–2018.
Major taxa studied
Squamata.
Methods
We compiled a database of 56 studies reporting how habitat modification affects reptile abundance and calculated standardized mean differences in abundance (Hedges’ g). We used Bayesian meta‐analytical models to test whether responses to habitat modification depended on body size, clutch size, reproductive mode, habitat specialization, range size, disturbance type, vegetation type, temperature and precipitation.
Results
Based on 815 effect sizes from 376 species, we found an overall negative effect of habitat modification on reptile abundance (mean Hedges’ g = −0.43, 95% credible intervals = −0.61 to −0.26). Reptile abundance was, on average, one‐third lower in modified compared with unmodified habitats. Small range sizes and small clutch sizes were associated with more negative responses to habitat modification, although the responses were weak and the credible intervals overlapped zero. We detected no effects of body size, habitat specialization, reproductive mode (egg‐laying or live‐bearing), temperature or precipitation. Some families exhibited more negative responses than others, although overall there was no phylogenetic signal in the data. Mining had the most negative impacts on reptile abundance, followed by agriculture, grazing, plantations and patch size reduction, whereas the mean effect of logging was neutral.
Main conclusions
Habitat modification is a key cause of reptile population declines, although there is variability in responses both within and between species, families and vegetation types. The effect of disturbance type appeared to be related to the intensity of habitat modification. Ongoing development of environmentally sustainable practices that ameliorate anthropogenic impacts is urgently needed to prevent declines in reptile populations.</description><subject>Abundance</subject><subject>agricultural intensification</subject><subject>Anthropogenic factors</subject><subject>Bayesian analysis</subject><subject>Body size</subject><subject>Clutch size</subject><subject>Data mining</subject><subject>deforestation</subject><subject>Disturbance</subject><subject>ecological disturbance</subject><subject>Environmental factors</subject><subject>extinction risk</subject><subject>habitat modification</subject><subject>Habitats</subject><subject>Human influences</subject><subject>Intervals</subject><subject>land‐use change</subject><subject>lizards</subject><subject>Mathematical models</subject><subject>Meta-analysis</subject><subject>Phylogeny</subject><subject>Population decline</subject><subject>Populations</subject><subject>Precipitation</subject><subject>Reptiles</subject><subject>Size reduction</subject><subject>snakes</subject><subject>Specialization</subject><subject>Species</subject><subject>Squamata</subject><subject>Sustainable development</subject><subject>Sustainable practices</subject><subject>Temperature</subject><subject>Vegetation</subject><subject>Vegetation type</subject><issn>1466-822X</issn><issn>1466-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KAzEQh4MoWKsH3yDgycO2mU32n7daahUKoih4C0k226ZsN2uSInvzEXxGn8TVFW_OZQZ-3wzDh9A5kAn0NV1rOQFKCjhAI2BpGuUxzQ__5vjlGJ14vyWEJCxJR-jhUbfB1Bo77VvbeO1xsFg0YeNsa9e6MQpvhDRBBLyzpamMEsHY5grP8Lq2UtR4p4P4fP8Qjag7b_wpOqpE7fXZbx-j55vF0_w2Wt0v7-azVaTiIoNIsIrmRc4EgIIcJC0qKFnMZEoVgYIlmUyKjDIqFaSKxSVJsqwEKpSSaR_RMboY7rbOvu61D3xr965_wvOYkTxPshRoT10OlHLWe6cr3jqzE67jQPi3Md4b4z_GenY6sG-9kO5_kC8X18PGF8aJbSs</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Doherty, Tim S.</creator><creator>Balouch, Sara</creator><creator>Bell, Kristian</creator><creator>Burns, Thomas J.</creator><creator>Feldman, Anat</creator><creator>Fist, Charles</creator><creator>Garvey, Timothy F.</creator><creator>Jessop, Tim S.</creator><creator>Meiri, Shai</creator><creator>Driscoll, Don A.</creator><creator>McGill, Brian</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><orcidid>https://orcid.org/0000-0002-1560-5235</orcidid><orcidid>https://orcid.org/0000-0002-1857-6257</orcidid><orcidid>https://orcid.org/0000-0001-7745-0251</orcidid><orcidid>https://orcid.org/0000-0003-3839-6330</orcidid><orcidid>https://orcid.org/0000-0002-7712-4373</orcidid></search><sort><creationdate>202007</creationdate><title>Reptile responses to anthropogenic habitat modification: A global meta‐analysis</title><author>Doherty, Tim S. ; Balouch, Sara ; Bell, Kristian ; Burns, Thomas J. ; Feldman, Anat ; Fist, Charles ; Garvey, Timothy F. ; Jessop, Tim S. ; Meiri, Shai ; Driscoll, Don A. ; McGill, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2971-a4f38984a11c181b39f1d424b63c019457b597343bc16c42d0577d13accb6b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abundance</topic><topic>agricultural intensification</topic><topic>Anthropogenic factors</topic><topic>Bayesian analysis</topic><topic>Body size</topic><topic>Clutch size</topic><topic>Data mining</topic><topic>deforestation</topic><topic>Disturbance</topic><topic>ecological disturbance</topic><topic>Environmental factors</topic><topic>extinction risk</topic><topic>habitat modification</topic><topic>Habitats</topic><topic>Human influences</topic><topic>Intervals</topic><topic>land‐use change</topic><topic>lizards</topic><topic>Mathematical models</topic><topic>Meta-analysis</topic><topic>Phylogeny</topic><topic>Population decline</topic><topic>Populations</topic><topic>Precipitation</topic><topic>Reptiles</topic><topic>Size reduction</topic><topic>snakes</topic><topic>Specialization</topic><topic>Species</topic><topic>Squamata</topic><topic>Sustainable development</topic><topic>Sustainable practices</topic><topic>Temperature</topic><topic>Vegetation</topic><topic>Vegetation type</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doherty, Tim S.</creatorcontrib><creatorcontrib>Balouch, Sara</creatorcontrib><creatorcontrib>Bell, Kristian</creatorcontrib><creatorcontrib>Burns, Thomas J.</creatorcontrib><creatorcontrib>Feldman, Anat</creatorcontrib><creatorcontrib>Fist, Charles</creatorcontrib><creatorcontrib>Garvey, Timothy F.</creatorcontrib><creatorcontrib>Jessop, Tim S.</creatorcontrib><creatorcontrib>Meiri, Shai</creatorcontrib><creatorcontrib>Driscoll, Don A.</creatorcontrib><creatorcontrib>McGill, Brian</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Global ecology and biogeography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doherty, Tim S.</au><au>Balouch, Sara</au><au>Bell, Kristian</au><au>Burns, Thomas J.</au><au>Feldman, Anat</au><au>Fist, Charles</au><au>Garvey, Timothy F.</au><au>Jessop, Tim S.</au><au>Meiri, Shai</au><au>Driscoll, Don A.</au><au>McGill, Brian</au><au>McGill, Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reptile responses to anthropogenic habitat modification: A global meta‐analysis</atitle><jtitle>Global ecology and biogeography</jtitle><date>2020-07</date><risdate>2020</risdate><volume>29</volume><issue>7</issue><spage>1265</spage><epage>1279</epage><pages>1265-1279</pages><issn>1466-822X</issn><eissn>1466-8238</eissn><abstract>Aim
The aim was to determine how reptile populations respond to anthropogenic habitat modification and determine whether species traits and environmental factors influence such responses.
Location
Global.
Time period
1981–2018.
Major taxa studied
Squamata.
Methods
We compiled a database of 56 studies reporting how habitat modification affects reptile abundance and calculated standardized mean differences in abundance (Hedges’ g). We used Bayesian meta‐analytical models to test whether responses to habitat modification depended on body size, clutch size, reproductive mode, habitat specialization, range size, disturbance type, vegetation type, temperature and precipitation.
Results
Based on 815 effect sizes from 376 species, we found an overall negative effect of habitat modification on reptile abundance (mean Hedges’ g = −0.43, 95% credible intervals = −0.61 to −0.26). Reptile abundance was, on average, one‐third lower in modified compared with unmodified habitats. Small range sizes and small clutch sizes were associated with more negative responses to habitat modification, although the responses were weak and the credible intervals overlapped zero. We detected no effects of body size, habitat specialization, reproductive mode (egg‐laying or live‐bearing), temperature or precipitation. Some families exhibited more negative responses than others, although overall there was no phylogenetic signal in the data. Mining had the most negative impacts on reptile abundance, followed by agriculture, grazing, plantations and patch size reduction, whereas the mean effect of logging was neutral.
Main conclusions
Habitat modification is a key cause of reptile population declines, although there is variability in responses both within and between species, families and vegetation types. The effect of disturbance type appeared to be related to the intensity of habitat modification. Ongoing development of environmentally sustainable practices that ameliorate anthropogenic impacts is urgently needed to prevent declines in reptile populations.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/geb.13091</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1560-5235</orcidid><orcidid>https://orcid.org/0000-0002-1857-6257</orcidid><orcidid>https://orcid.org/0000-0001-7745-0251</orcidid><orcidid>https://orcid.org/0000-0003-3839-6330</orcidid><orcidid>https://orcid.org/0000-0002-7712-4373</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1466-822X |
ispartof | Global ecology and biogeography, 2020-07, Vol.29 (7), p.1265-1279 |
issn | 1466-822X 1466-8238 |
language | eng |
recordid | cdi_proquest_journals_2408857613 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Abundance agricultural intensification Anthropogenic factors Bayesian analysis Body size Clutch size Data mining deforestation Disturbance ecological disturbance Environmental factors extinction risk habitat modification Habitats Human influences Intervals land‐use change lizards Mathematical models Meta-analysis Phylogeny Population decline Populations Precipitation Reptiles Size reduction snakes Specialization Species Squamata Sustainable development Sustainable practices Temperature Vegetation Vegetation type |
title | Reptile responses to anthropogenic habitat modification: A global meta‐analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reptile%20responses%20to%20anthropogenic%20habitat%20modification:%20A%20global%20meta%E2%80%90analysis&rft.jtitle=Global%20ecology%20and%20biogeography&rft.au=Doherty,%20Tim%20S.&rft.date=2020-07&rft.volume=29&rft.issue=7&rft.spage=1265&rft.epage=1279&rft.pages=1265-1279&rft.issn=1466-822X&rft.eissn=1466-8238&rft_id=info:doi/10.1111/geb.13091&rft_dat=%3Cproquest_cross%3E2408857613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408857613&rft_id=info:pmid/&rfr_iscdi=true |