Reptile responses to anthropogenic habitat modification: A global meta‐analysis

Aim The aim was to determine how reptile populations respond to anthropogenic habitat modification and determine whether species traits and environmental factors influence such responses. Location Global. Time period 1981–2018. Major taxa studied Squamata. Methods We compiled a database of 56 studie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global ecology and biogeography 2020-07, Vol.29 (7), p.1265-1279
Hauptverfasser: Doherty, Tim S., Balouch, Sara, Bell, Kristian, Burns, Thomas J., Feldman, Anat, Fist, Charles, Garvey, Timothy F., Jessop, Tim S., Meiri, Shai, Driscoll, Don A., McGill, Brian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1279
container_issue 7
container_start_page 1265
container_title Global ecology and biogeography
container_volume 29
creator Doherty, Tim S.
Balouch, Sara
Bell, Kristian
Burns, Thomas J.
Feldman, Anat
Fist, Charles
Garvey, Timothy F.
Jessop, Tim S.
Meiri, Shai
Driscoll, Don A.
McGill, Brian
description Aim The aim was to determine how reptile populations respond to anthropogenic habitat modification and determine whether species traits and environmental factors influence such responses. Location Global. Time period 1981–2018. Major taxa studied Squamata. Methods We compiled a database of 56 studies reporting how habitat modification affects reptile abundance and calculated standardized mean differences in abundance (Hedges’ g). We used Bayesian meta‐analytical models to test whether responses to habitat modification depended on body size, clutch size, reproductive mode, habitat specialization, range size, disturbance type, vegetation type, temperature and precipitation. Results Based on 815 effect sizes from 376 species, we found an overall negative effect of habitat modification on reptile abundance (mean Hedges’ g = −0.43, 95% credible intervals = −0.61 to −0.26). Reptile abundance was, on average, one‐third lower in modified compared with unmodified habitats. Small range sizes and small clutch sizes were associated with more negative responses to habitat modification, although the responses were weak and the credible intervals overlapped zero. We detected no effects of body size, habitat specialization, reproductive mode (egg‐laying or live‐bearing), temperature or precipitation. Some families exhibited more negative responses than others, although overall there was no phylogenetic signal in the data. Mining had the most negative impacts on reptile abundance, followed by agriculture, grazing, plantations and patch size reduction, whereas the mean effect of logging was neutral. Main conclusions Habitat modification is a key cause of reptile population declines, although there is variability in responses both within and between species, families and vegetation types. The effect of disturbance type appeared to be related to the intensity of habitat modification. Ongoing development of environmentally sustainable practices that ameliorate anthropogenic impacts is urgently needed to prevent declines in reptile populations.
doi_str_mv 10.1111/geb.13091
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2408857613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2408857613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2971-a4f38984a11c181b39f1d424b63c019457b597343bc16c42d0577d13accb6b593</originalsourceid><addsrcrecordid>eNp1kM9KAzEQh4MoWKsH3yDgycO2mU32n7daahUKoih4C0k226ZsN2uSInvzEXxGn8TVFW_OZQZ-3wzDh9A5kAn0NV1rOQFKCjhAI2BpGuUxzQ__5vjlGJ14vyWEJCxJR-jhUbfB1Bo77VvbeO1xsFg0YeNsa9e6MQpvhDRBBLyzpamMEsHY5grP8Lq2UtR4p4P4fP8Qjag7b_wpOqpE7fXZbx-j55vF0_w2Wt0v7-azVaTiIoNIsIrmRc4EgIIcJC0qKFnMZEoVgYIlmUyKjDIqFaSKxSVJsqwEKpSSaR_RMboY7rbOvu61D3xr965_wvOYkTxPshRoT10OlHLWe6cr3jqzE67jQPi3Md4b4z_GenY6sG-9kO5_kC8X18PGF8aJbSs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408857613</pqid></control><display><type>article</type><title>Reptile responses to anthropogenic habitat modification: A global meta‐analysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Doherty, Tim S. ; Balouch, Sara ; Bell, Kristian ; Burns, Thomas J. ; Feldman, Anat ; Fist, Charles ; Garvey, Timothy F. ; Jessop, Tim S. ; Meiri, Shai ; Driscoll, Don A. ; McGill, Brian</creator><contributor>McGill, Brian</contributor><creatorcontrib>Doherty, Tim S. ; Balouch, Sara ; Bell, Kristian ; Burns, Thomas J. ; Feldman, Anat ; Fist, Charles ; Garvey, Timothy F. ; Jessop, Tim S. ; Meiri, Shai ; Driscoll, Don A. ; McGill, Brian ; McGill, Brian</creatorcontrib><description>Aim The aim was to determine how reptile populations respond to anthropogenic habitat modification and determine whether species traits and environmental factors influence such responses. Location Global. Time period 1981–2018. Major taxa studied Squamata. Methods We compiled a database of 56 studies reporting how habitat modification affects reptile abundance and calculated standardized mean differences in abundance (Hedges’ g). We used Bayesian meta‐analytical models to test whether responses to habitat modification depended on body size, clutch size, reproductive mode, habitat specialization, range size, disturbance type, vegetation type, temperature and precipitation. Results Based on 815 effect sizes from 376 species, we found an overall negative effect of habitat modification on reptile abundance (mean Hedges’ g = −0.43, 95% credible intervals = −0.61 to −0.26). Reptile abundance was, on average, one‐third lower in modified compared with unmodified habitats. Small range sizes and small clutch sizes were associated with more negative responses to habitat modification, although the responses were weak and the credible intervals overlapped zero. We detected no effects of body size, habitat specialization, reproductive mode (egg‐laying or live‐bearing), temperature or precipitation. Some families exhibited more negative responses than others, although overall there was no phylogenetic signal in the data. Mining had the most negative impacts on reptile abundance, followed by agriculture, grazing, plantations and patch size reduction, whereas the mean effect of logging was neutral. Main conclusions Habitat modification is a key cause of reptile population declines, although there is variability in responses both within and between species, families and vegetation types. The effect of disturbance type appeared to be related to the intensity of habitat modification. Ongoing development of environmentally sustainable practices that ameliorate anthropogenic impacts is urgently needed to prevent declines in reptile populations.</description><identifier>ISSN: 1466-822X</identifier><identifier>EISSN: 1466-8238</identifier><identifier>DOI: 10.1111/geb.13091</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Abundance ; agricultural intensification ; Anthropogenic factors ; Bayesian analysis ; Body size ; Clutch size ; Data mining ; deforestation ; Disturbance ; ecological disturbance ; Environmental factors ; extinction risk ; habitat modification ; Habitats ; Human influences ; Intervals ; land‐use change ; lizards ; Mathematical models ; Meta-analysis ; Phylogeny ; Population decline ; Populations ; Precipitation ; Reptiles ; Size reduction ; snakes ; Specialization ; Species ; Squamata ; Sustainable development ; Sustainable practices ; Temperature ; Vegetation ; Vegetation type</subject><ispartof>Global ecology and biogeography, 2020-07, Vol.29 (7), p.1265-1279</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2971-a4f38984a11c181b39f1d424b63c019457b597343bc16c42d0577d13accb6b593</citedby><cites>FETCH-LOGICAL-c2971-a4f38984a11c181b39f1d424b63c019457b597343bc16c42d0577d13accb6b593</cites><orcidid>0000-0002-1560-5235 ; 0000-0002-1857-6257 ; 0000-0001-7745-0251 ; 0000-0003-3839-6330 ; 0000-0002-7712-4373</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgeb.13091$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgeb.13091$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><contributor>McGill, Brian</contributor><creatorcontrib>Doherty, Tim S.</creatorcontrib><creatorcontrib>Balouch, Sara</creatorcontrib><creatorcontrib>Bell, Kristian</creatorcontrib><creatorcontrib>Burns, Thomas J.</creatorcontrib><creatorcontrib>Feldman, Anat</creatorcontrib><creatorcontrib>Fist, Charles</creatorcontrib><creatorcontrib>Garvey, Timothy F.</creatorcontrib><creatorcontrib>Jessop, Tim S.</creatorcontrib><creatorcontrib>Meiri, Shai</creatorcontrib><creatorcontrib>Driscoll, Don A.</creatorcontrib><creatorcontrib>McGill, Brian</creatorcontrib><title>Reptile responses to anthropogenic habitat modification: A global meta‐analysis</title><title>Global ecology and biogeography</title><description>Aim The aim was to determine how reptile populations respond to anthropogenic habitat modification and determine whether species traits and environmental factors influence such responses. Location Global. Time period 1981–2018. Major taxa studied Squamata. Methods We compiled a database of 56 studies reporting how habitat modification affects reptile abundance and calculated standardized mean differences in abundance (Hedges’ g). We used Bayesian meta‐analytical models to test whether responses to habitat modification depended on body size, clutch size, reproductive mode, habitat specialization, range size, disturbance type, vegetation type, temperature and precipitation. Results Based on 815 effect sizes from 376 species, we found an overall negative effect of habitat modification on reptile abundance (mean Hedges’ g = −0.43, 95% credible intervals = −0.61 to −0.26). Reptile abundance was, on average, one‐third lower in modified compared with unmodified habitats. Small range sizes and small clutch sizes were associated with more negative responses to habitat modification, although the responses were weak and the credible intervals overlapped zero. We detected no effects of body size, habitat specialization, reproductive mode (egg‐laying or live‐bearing), temperature or precipitation. Some families exhibited more negative responses than others, although overall there was no phylogenetic signal in the data. Mining had the most negative impacts on reptile abundance, followed by agriculture, grazing, plantations and patch size reduction, whereas the mean effect of logging was neutral. Main conclusions Habitat modification is a key cause of reptile population declines, although there is variability in responses both within and between species, families and vegetation types. The effect of disturbance type appeared to be related to the intensity of habitat modification. Ongoing development of environmentally sustainable practices that ameliorate anthropogenic impacts is urgently needed to prevent declines in reptile populations.</description><subject>Abundance</subject><subject>agricultural intensification</subject><subject>Anthropogenic factors</subject><subject>Bayesian analysis</subject><subject>Body size</subject><subject>Clutch size</subject><subject>Data mining</subject><subject>deforestation</subject><subject>Disturbance</subject><subject>ecological disturbance</subject><subject>Environmental factors</subject><subject>extinction risk</subject><subject>habitat modification</subject><subject>Habitats</subject><subject>Human influences</subject><subject>Intervals</subject><subject>land‐use change</subject><subject>lizards</subject><subject>Mathematical models</subject><subject>Meta-analysis</subject><subject>Phylogeny</subject><subject>Population decline</subject><subject>Populations</subject><subject>Precipitation</subject><subject>Reptiles</subject><subject>Size reduction</subject><subject>snakes</subject><subject>Specialization</subject><subject>Species</subject><subject>Squamata</subject><subject>Sustainable development</subject><subject>Sustainable practices</subject><subject>Temperature</subject><subject>Vegetation</subject><subject>Vegetation type</subject><issn>1466-822X</issn><issn>1466-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KAzEQh4MoWKsH3yDgycO2mU32n7daahUKoih4C0k226ZsN2uSInvzEXxGn8TVFW_OZQZ-3wzDh9A5kAn0NV1rOQFKCjhAI2BpGuUxzQ__5vjlGJ14vyWEJCxJR-jhUbfB1Bo77VvbeO1xsFg0YeNsa9e6MQpvhDRBBLyzpamMEsHY5grP8Lq2UtR4p4P4fP8Qjag7b_wpOqpE7fXZbx-j55vF0_w2Wt0v7-azVaTiIoNIsIrmRc4EgIIcJC0qKFnMZEoVgYIlmUyKjDIqFaSKxSVJsqwEKpSSaR_RMboY7rbOvu61D3xr965_wvOYkTxPshRoT10OlHLWe6cr3jqzE67jQPi3Md4b4z_GenY6sG-9kO5_kC8X18PGF8aJbSs</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Doherty, Tim S.</creator><creator>Balouch, Sara</creator><creator>Bell, Kristian</creator><creator>Burns, Thomas J.</creator><creator>Feldman, Anat</creator><creator>Fist, Charles</creator><creator>Garvey, Timothy F.</creator><creator>Jessop, Tim S.</creator><creator>Meiri, Shai</creator><creator>Driscoll, Don A.</creator><creator>McGill, Brian</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><orcidid>https://orcid.org/0000-0002-1560-5235</orcidid><orcidid>https://orcid.org/0000-0002-1857-6257</orcidid><orcidid>https://orcid.org/0000-0001-7745-0251</orcidid><orcidid>https://orcid.org/0000-0003-3839-6330</orcidid><orcidid>https://orcid.org/0000-0002-7712-4373</orcidid></search><sort><creationdate>202007</creationdate><title>Reptile responses to anthropogenic habitat modification: A global meta‐analysis</title><author>Doherty, Tim S. ; Balouch, Sara ; Bell, Kristian ; Burns, Thomas J. ; Feldman, Anat ; Fist, Charles ; Garvey, Timothy F. ; Jessop, Tim S. ; Meiri, Shai ; Driscoll, Don A. ; McGill, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2971-a4f38984a11c181b39f1d424b63c019457b597343bc16c42d0577d13accb6b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abundance</topic><topic>agricultural intensification</topic><topic>Anthropogenic factors</topic><topic>Bayesian analysis</topic><topic>Body size</topic><topic>Clutch size</topic><topic>Data mining</topic><topic>deforestation</topic><topic>Disturbance</topic><topic>ecological disturbance</topic><topic>Environmental factors</topic><topic>extinction risk</topic><topic>habitat modification</topic><topic>Habitats</topic><topic>Human influences</topic><topic>Intervals</topic><topic>land‐use change</topic><topic>lizards</topic><topic>Mathematical models</topic><topic>Meta-analysis</topic><topic>Phylogeny</topic><topic>Population decline</topic><topic>Populations</topic><topic>Precipitation</topic><topic>Reptiles</topic><topic>Size reduction</topic><topic>snakes</topic><topic>Specialization</topic><topic>Species</topic><topic>Squamata</topic><topic>Sustainable development</topic><topic>Sustainable practices</topic><topic>Temperature</topic><topic>Vegetation</topic><topic>Vegetation type</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doherty, Tim S.</creatorcontrib><creatorcontrib>Balouch, Sara</creatorcontrib><creatorcontrib>Bell, Kristian</creatorcontrib><creatorcontrib>Burns, Thomas J.</creatorcontrib><creatorcontrib>Feldman, Anat</creatorcontrib><creatorcontrib>Fist, Charles</creatorcontrib><creatorcontrib>Garvey, Timothy F.</creatorcontrib><creatorcontrib>Jessop, Tim S.</creatorcontrib><creatorcontrib>Meiri, Shai</creatorcontrib><creatorcontrib>Driscoll, Don A.</creatorcontrib><creatorcontrib>McGill, Brian</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Global ecology and biogeography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doherty, Tim S.</au><au>Balouch, Sara</au><au>Bell, Kristian</au><au>Burns, Thomas J.</au><au>Feldman, Anat</au><au>Fist, Charles</au><au>Garvey, Timothy F.</au><au>Jessop, Tim S.</au><au>Meiri, Shai</au><au>Driscoll, Don A.</au><au>McGill, Brian</au><au>McGill, Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reptile responses to anthropogenic habitat modification: A global meta‐analysis</atitle><jtitle>Global ecology and biogeography</jtitle><date>2020-07</date><risdate>2020</risdate><volume>29</volume><issue>7</issue><spage>1265</spage><epage>1279</epage><pages>1265-1279</pages><issn>1466-822X</issn><eissn>1466-8238</eissn><abstract>Aim The aim was to determine how reptile populations respond to anthropogenic habitat modification and determine whether species traits and environmental factors influence such responses. Location Global. Time period 1981–2018. Major taxa studied Squamata. Methods We compiled a database of 56 studies reporting how habitat modification affects reptile abundance and calculated standardized mean differences in abundance (Hedges’ g). We used Bayesian meta‐analytical models to test whether responses to habitat modification depended on body size, clutch size, reproductive mode, habitat specialization, range size, disturbance type, vegetation type, temperature and precipitation. Results Based on 815 effect sizes from 376 species, we found an overall negative effect of habitat modification on reptile abundance (mean Hedges’ g = −0.43, 95% credible intervals = −0.61 to −0.26). Reptile abundance was, on average, one‐third lower in modified compared with unmodified habitats. Small range sizes and small clutch sizes were associated with more negative responses to habitat modification, although the responses were weak and the credible intervals overlapped zero. We detected no effects of body size, habitat specialization, reproductive mode (egg‐laying or live‐bearing), temperature or precipitation. Some families exhibited more negative responses than others, although overall there was no phylogenetic signal in the data. Mining had the most negative impacts on reptile abundance, followed by agriculture, grazing, plantations and patch size reduction, whereas the mean effect of logging was neutral. Main conclusions Habitat modification is a key cause of reptile population declines, although there is variability in responses both within and between species, families and vegetation types. The effect of disturbance type appeared to be related to the intensity of habitat modification. Ongoing development of environmentally sustainable practices that ameliorate anthropogenic impacts is urgently needed to prevent declines in reptile populations.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/geb.13091</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1560-5235</orcidid><orcidid>https://orcid.org/0000-0002-1857-6257</orcidid><orcidid>https://orcid.org/0000-0001-7745-0251</orcidid><orcidid>https://orcid.org/0000-0003-3839-6330</orcidid><orcidid>https://orcid.org/0000-0002-7712-4373</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1466-822X
ispartof Global ecology and biogeography, 2020-07, Vol.29 (7), p.1265-1279
issn 1466-822X
1466-8238
language eng
recordid cdi_proquest_journals_2408857613
source Wiley Online Library Journals Frontfile Complete
subjects Abundance
agricultural intensification
Anthropogenic factors
Bayesian analysis
Body size
Clutch size
Data mining
deforestation
Disturbance
ecological disturbance
Environmental factors
extinction risk
habitat modification
Habitats
Human influences
Intervals
land‐use change
lizards
Mathematical models
Meta-analysis
Phylogeny
Population decline
Populations
Precipitation
Reptiles
Size reduction
snakes
Specialization
Species
Squamata
Sustainable development
Sustainable practices
Temperature
Vegetation
Vegetation type
title Reptile responses to anthropogenic habitat modification: A global meta‐analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reptile%20responses%20to%20anthropogenic%20habitat%20modification:%20A%20global%20meta%E2%80%90analysis&rft.jtitle=Global%20ecology%20and%20biogeography&rft.au=Doherty,%20Tim%20S.&rft.date=2020-07&rft.volume=29&rft.issue=7&rft.spage=1265&rft.epage=1279&rft.pages=1265-1279&rft.issn=1466-822X&rft.eissn=1466-8238&rft_id=info:doi/10.1111/geb.13091&rft_dat=%3Cproquest_cross%3E2408857613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408857613&rft_id=info:pmid/&rfr_iscdi=true