Modularity and Complete Natural Homeoses in Cervical Vertebrae of Extant and Extinct Penguins (Aves: Sphenisciformes)

The cervical system of extant penguins (Aves: Sphenisciformes) is organised into morphological modules, each with its biomechanical function. Indeed, for these marine pelagic birds to acquire hydrodynamic morphology, the folding of the neck is essential. Despite a common general structure, the cervi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolutionary Biology 2010-12, Vol.37 (4), p.210-226
Hauptverfasser: Guinard, Geoffrey, Marchand, Didier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 226
container_issue 4
container_start_page 210
container_title Evolutionary Biology
container_volume 37
creator Guinard, Geoffrey
Marchand, Didier
description The cervical system of extant penguins (Aves: Sphenisciformes) is organised into morphological modules, each with its biomechanical function. Indeed, for these marine pelagic birds to acquire hydrodynamic morphology, the folding of the neck is essential. Despite a common general structure, the cervical vertebrae exhibit morphological differences depending on their positioning. These characteristics are identified as apparent cases of complete natural homeotic transformations—therefore, the composition of some modules varies. Two types of complete cervical homeoses are identified between species, but the second type can also occur within some species when the post hatching development is considered. The fossil material analysed here makes it apparent that the two modular configurations characterising the anterior part of the neck—a consequence of the first homeosis—existed 36 My and 25 My ago, for one, and circa 10 My ago, for the other. These comparisons also reveal a clear differentiation in vertebral features between the fossil species of the Oligocene-Miocene ages and the more recent and extant penguins. Ultimately, these observations make the proposal of a hypothesis in relation to the ontogenetic influence of Hox genes, and their regulators, based on the changes observed in the cervical segment of Sphenisciformes.
doi_str_mv 10.1007/s11692-010-9097-0
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2408792579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A717806020</galeid><sourcerecordid>A717806020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-38b3f8e1a352baf648377a4f7ce153b94cbcea580cd9cbd4bedf913a8ef4ee013</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhhtRcFz9AZ4MeHEPvSad9CTxNgyrI4wfsK7XkE5XZrN0J2OSHtx_b9peXASRHBKK5wlV9VbVS4IvCMb8bSJkLZsaE1xLLHmNH1UrIimrG8Hax9WqMKSmzRo_rZ6ldItxSzkVq2r6FPpp0NHlO6R9j7ZhPA6QAX3WeYp6QLswQkiQkPNoC_HkTCl-h5ihixpQsOjyZ9Y-_7bL03mT0Vfwh8n5hN5sTpDeoavjDXiXjLMhjpDOn1dPrB4SvLi_z6rr95fftrt6_-XDx-1mXxvGSK6p6KgVQDRtm07bNROUc80sN0Ba2klmOgO6Fdj00nQ966C3klAtwDIATOhZdb78e6MHdYxu1PFOBe3UbrNXc-1-D-vTzL5e2GMMPyZIWd2GKfrSnmoYFlw2LZcP1EEPoJy3IUdtxjKb2nDCBV7jBhfq4h9UOT2MzgQP1pX6XwJZBBNDShHsn24JVnPAaglYlYDVHLCanWZxUmH9AeJDw_-TXi2S1UHpQ3RJXV81ZVWYSEIEY_QXm96wpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408792579</pqid></control><display><type>article</type><title>Modularity and Complete Natural Homeoses in Cervical Vertebrae of Extant and Extinct Penguins (Aves: Sphenisciformes)</title><source>Springer Nature - Complete Springer Journals</source><creator>Guinard, Geoffrey ; Marchand, Didier</creator><creatorcontrib>Guinard, Geoffrey ; Marchand, Didier</creatorcontrib><description>The cervical system of extant penguins (Aves: Sphenisciformes) is organised into morphological modules, each with its biomechanical function. Indeed, for these marine pelagic birds to acquire hydrodynamic morphology, the folding of the neck is essential. Despite a common general structure, the cervical vertebrae exhibit morphological differences depending on their positioning. These characteristics are identified as apparent cases of complete natural homeotic transformations—therefore, the composition of some modules varies. Two types of complete cervical homeoses are identified between species, but the second type can also occur within some species when the post hatching development is considered. The fossil material analysed here makes it apparent that the two modular configurations characterising the anterior part of the neck—a consequence of the first homeosis—existed 36 My and 25 My ago, for one, and circa 10 My ago, for the other. These comparisons also reveal a clear differentiation in vertebral features between the fossil species of the Oligocene-Miocene ages and the more recent and extant penguins. Ultimately, these observations make the proposal of a hypothesis in relation to the ontogenetic influence of Hox genes, and their regulators, based on the changes observed in the cervical segment of Sphenisciformes.</description><identifier>ISSN: 0071-3260</identifier><identifier>EISSN: 1934-2845</identifier><identifier>DOI: 10.1007/s11692-010-9097-0</identifier><language>eng</language><publisher>Boston: Boston : Springer US</publisher><subject>Analysis ; Animal Genetics and Genomics ; Aves ; Biomedical and Life Sciences ; Development Biology ; Developmental Biology ; Earth Sciences ; Ecology ; Evolutionary Biology ; Fossils ; Hatching ; Homeosis ; HOX gene ; Human Genetics ; Life Sciences ; Morphogenesis ; Morphology ; Ontogeny ; Paleontology ; Penguins ; Research Article ; Sciences of the Universe ; Species ; Sphenisciformes ; Vertebrae</subject><ispartof>Evolutionary Biology, 2010-12, Vol.37 (4), p.210-226</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>COPYRIGHT 2010 Springer</rights><rights>Springer Science+Business Media, LLC 2010.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-38b3f8e1a352baf648377a4f7ce153b94cbcea580cd9cbd4bedf913a8ef4ee013</citedby><cites>FETCH-LOGICAL-c441t-38b3f8e1a352baf648377a4f7ce153b94cbcea580cd9cbd4bedf913a8ef4ee013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11692-010-9097-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11692-010-9097-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,885,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00537386$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guinard, Geoffrey</creatorcontrib><creatorcontrib>Marchand, Didier</creatorcontrib><title>Modularity and Complete Natural Homeoses in Cervical Vertebrae of Extant and Extinct Penguins (Aves: Sphenisciformes)</title><title>Evolutionary Biology</title><addtitle>Evol Biol</addtitle><description>The cervical system of extant penguins (Aves: Sphenisciformes) is organised into morphological modules, each with its biomechanical function. Indeed, for these marine pelagic birds to acquire hydrodynamic morphology, the folding of the neck is essential. Despite a common general structure, the cervical vertebrae exhibit morphological differences depending on their positioning. These characteristics are identified as apparent cases of complete natural homeotic transformations—therefore, the composition of some modules varies. Two types of complete cervical homeoses are identified between species, but the second type can also occur within some species when the post hatching development is considered. The fossil material analysed here makes it apparent that the two modular configurations characterising the anterior part of the neck—a consequence of the first homeosis—existed 36 My and 25 My ago, for one, and circa 10 My ago, for the other. These comparisons also reveal a clear differentiation in vertebral features between the fossil species of the Oligocene-Miocene ages and the more recent and extant penguins. Ultimately, these observations make the proposal of a hypothesis in relation to the ontogenetic influence of Hox genes, and their regulators, based on the changes observed in the cervical segment of Sphenisciformes.</description><subject>Analysis</subject><subject>Animal Genetics and Genomics</subject><subject>Aves</subject><subject>Biomedical and Life Sciences</subject><subject>Development Biology</subject><subject>Developmental Biology</subject><subject>Earth Sciences</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Fossils</subject><subject>Hatching</subject><subject>Homeosis</subject><subject>HOX gene</subject><subject>Human Genetics</subject><subject>Life Sciences</subject><subject>Morphogenesis</subject><subject>Morphology</subject><subject>Ontogeny</subject><subject>Paleontology</subject><subject>Penguins</subject><subject>Research Article</subject><subject>Sciences of the Universe</subject><subject>Species</subject><subject>Sphenisciformes</subject><subject>Vertebrae</subject><issn>0071-3260</issn><issn>1934-2845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU2LFDEQhhtRcFz9AZ4MeHEPvSad9CTxNgyrI4wfsK7XkE5XZrN0J2OSHtx_b9peXASRHBKK5wlV9VbVS4IvCMb8bSJkLZsaE1xLLHmNH1UrIimrG8Hax9WqMKSmzRo_rZ6ldItxSzkVq2r6FPpp0NHlO6R9j7ZhPA6QAX3WeYp6QLswQkiQkPNoC_HkTCl-h5ihixpQsOjyZ9Y-_7bL03mT0Vfwh8n5hN5sTpDeoavjDXiXjLMhjpDOn1dPrB4SvLi_z6rr95fftrt6_-XDx-1mXxvGSK6p6KgVQDRtm07bNROUc80sN0Ba2klmOgO6Fdj00nQ966C3klAtwDIATOhZdb78e6MHdYxu1PFOBe3UbrNXc-1-D-vTzL5e2GMMPyZIWd2GKfrSnmoYFlw2LZcP1EEPoJy3IUdtxjKb2nDCBV7jBhfq4h9UOT2MzgQP1pX6XwJZBBNDShHsn24JVnPAaglYlYDVHLCanWZxUmH9AeJDw_-TXi2S1UHpQ3RJXV81ZVWYSEIEY_QXm96wpg</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Guinard, Geoffrey</creator><creator>Marchand, Didier</creator><general>Boston : Springer US</general><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope></search><sort><creationdate>20101201</creationdate><title>Modularity and Complete Natural Homeoses in Cervical Vertebrae of Extant and Extinct Penguins (Aves: Sphenisciformes)</title><author>Guinard, Geoffrey ; Marchand, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-38b3f8e1a352baf648377a4f7ce153b94cbcea580cd9cbd4bedf913a8ef4ee013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analysis</topic><topic>Animal Genetics and Genomics</topic><topic>Aves</topic><topic>Biomedical and Life Sciences</topic><topic>Development Biology</topic><topic>Developmental Biology</topic><topic>Earth Sciences</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Fossils</topic><topic>Hatching</topic><topic>Homeosis</topic><topic>HOX gene</topic><topic>Human Genetics</topic><topic>Life Sciences</topic><topic>Morphogenesis</topic><topic>Morphology</topic><topic>Ontogeny</topic><topic>Paleontology</topic><topic>Penguins</topic><topic>Research Article</topic><topic>Sciences of the Universe</topic><topic>Species</topic><topic>Sphenisciformes</topic><topic>Vertebrae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guinard, Geoffrey</creatorcontrib><creatorcontrib>Marchand, Didier</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Evolutionary Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guinard, Geoffrey</au><au>Marchand, Didier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modularity and Complete Natural Homeoses in Cervical Vertebrae of Extant and Extinct Penguins (Aves: Sphenisciformes)</atitle><jtitle>Evolutionary Biology</jtitle><stitle>Evol Biol</stitle><date>2010-12-01</date><risdate>2010</risdate><volume>37</volume><issue>4</issue><spage>210</spage><epage>226</epage><pages>210-226</pages><issn>0071-3260</issn><eissn>1934-2845</eissn><abstract>The cervical system of extant penguins (Aves: Sphenisciformes) is organised into morphological modules, each with its biomechanical function. Indeed, for these marine pelagic birds to acquire hydrodynamic morphology, the folding of the neck is essential. Despite a common general structure, the cervical vertebrae exhibit morphological differences depending on their positioning. These characteristics are identified as apparent cases of complete natural homeotic transformations—therefore, the composition of some modules varies. Two types of complete cervical homeoses are identified between species, but the second type can also occur within some species when the post hatching development is considered. The fossil material analysed here makes it apparent that the two modular configurations characterising the anterior part of the neck—a consequence of the first homeosis—existed 36 My and 25 My ago, for one, and circa 10 My ago, for the other. These comparisons also reveal a clear differentiation in vertebral features between the fossil species of the Oligocene-Miocene ages and the more recent and extant penguins. Ultimately, these observations make the proposal of a hypothesis in relation to the ontogenetic influence of Hox genes, and their regulators, based on the changes observed in the cervical segment of Sphenisciformes.</abstract><cop>Boston</cop><pub>Boston : Springer US</pub><doi>10.1007/s11692-010-9097-0</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0071-3260
ispartof Evolutionary Biology, 2010-12, Vol.37 (4), p.210-226
issn 0071-3260
1934-2845
language eng
recordid cdi_proquest_journals_2408792579
source Springer Nature - Complete Springer Journals
subjects Analysis
Animal Genetics and Genomics
Aves
Biomedical and Life Sciences
Development Biology
Developmental Biology
Earth Sciences
Ecology
Evolutionary Biology
Fossils
Hatching
Homeosis
HOX gene
Human Genetics
Life Sciences
Morphogenesis
Morphology
Ontogeny
Paleontology
Penguins
Research Article
Sciences of the Universe
Species
Sphenisciformes
Vertebrae
title Modularity and Complete Natural Homeoses in Cervical Vertebrae of Extant and Extinct Penguins (Aves: Sphenisciformes)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A35%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modularity%20and%20Complete%20Natural%20Homeoses%20in%20Cervical%20Vertebrae%20of%20Extant%20and%20Extinct%20Penguins%20(Aves:%20Sphenisciformes)&rft.jtitle=Evolutionary%20Biology&rft.au=Guinard,%20Geoffrey&rft.date=2010-12-01&rft.volume=37&rft.issue=4&rft.spage=210&rft.epage=226&rft.pages=210-226&rft.issn=0071-3260&rft.eissn=1934-2845&rft_id=info:doi/10.1007/s11692-010-9097-0&rft_dat=%3Cgale_hal_p%3EA717806020%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408792579&rft_id=info:pmid/&rft_galeid=A717806020&rfr_iscdi=true