Stress triaxiality effect on void nucleation in ductile metals
The stress triaxiality effect on the strain required for void nucleation by particle‐matrix debonding has been investigated by means of micromechanical modelling. A unit‐cell model considering an elastic spherical particle embedded in an elastic‐plastic matrix was developed to the purpose. Particle‐...
Gespeichert in:
Veröffentlicht in: | Fatigue & fracture of engineering materials & structures 2020-07, Vol.43 (7), p.1473-1486 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1486 |
---|---|
container_issue | 7 |
container_start_page | 1473 |
container_title | Fatigue & fracture of engineering materials & structures |
container_volume | 43 |
creator | Testa, Gabriel Bonora, Nicola Ruggiero, Andrew Iannitti, Gianluca Gentile, Domenico |
description | The stress triaxiality effect on the strain required for void nucleation by particle‐matrix debonding has been investigated by means of micromechanical modelling. A unit‐cell model considering an elastic spherical particle embedded in an elastic‐plastic matrix was developed to the purpose. Particle‐matrix decohesion was simulated through the progressive failure of a cohesive interface. It has been shown that the parameters of matrix‐particle cohesive interface are correlated with macroscopic material properties. Here, a simple relationship for the maximum cohesive opening at interface failure as a function of material fracture toughness and yield stress has been derived. Results seem to confirm that, increasing stress triaxiality, the strain at which void nucleation is predicted to occur decreases exponentially in a similar way as for fracture strain. This result has substantial implications in modelling of ductile damage because it indicates that if the stress triaxiality is high enough, ductile fracture can occur at plastic strain lower than that necessary to nucleate damage for moderate or low stress triaxiality regime. |
doi_str_mv | 10.1111/ffe.13212 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2408721063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2408721063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3632-4b9ecce4eb337cc1869efdfb11aa94e8e0527835117ed801fb4e7d2f97dae1a93</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK4e_AcFTx66m0nSpr0IsrgqLHhQwVtI0wlk6bZrkqr7743Wq3N5DHzzhvcIuQS6gDRLa3EBnAE7IjMQJc1ZWRfHZFbJosxlUb2dkrMQtpRCKTifkZvn6DGELHqnv5zuXDxkmExMzIY--xhcm_Wj6VBHl3bXZ-1oousw22HUXTgnJzYJXvzpnLyu715WD_nm6f5xdbvJDS85y0VTozEosOFcGgNVWaNtbQOgdS2wQlowWfECQGJbUbCNQNkyW8tWI-iaz8nV5Lv3w_uIIartMPo-vVRM0EoyoCVP1PVEGT-E4NGqvXc77Q8KqPqpR6Vk6reexC4n9jOlOfwPqvX6brr4BowhZrY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408721063</pqid></control><display><type>article</type><title>Stress triaxiality effect on void nucleation in ductile metals</title><source>Wiley-Blackwell Journals</source><creator>Testa, Gabriel ; Bonora, Nicola ; Ruggiero, Andrew ; Iannitti, Gianluca ; Gentile, Domenico</creator><creatorcontrib>Testa, Gabriel ; Bonora, Nicola ; Ruggiero, Andrew ; Iannitti, Gianluca ; Gentile, Domenico</creatorcontrib><description>The stress triaxiality effect on the strain required for void nucleation by particle‐matrix debonding has been investigated by means of micromechanical modelling. A unit‐cell model considering an elastic spherical particle embedded in an elastic‐plastic matrix was developed to the purpose. Particle‐matrix decohesion was simulated through the progressive failure of a cohesive interface. It has been shown that the parameters of matrix‐particle cohesive interface are correlated with macroscopic material properties. Here, a simple relationship for the maximum cohesive opening at interface failure as a function of material fracture toughness and yield stress has been derived. Results seem to confirm that, increasing stress triaxiality, the strain at which void nucleation is predicted to occur decreases exponentially in a similar way as for fracture strain. This result has substantial implications in modelling of ductile damage because it indicates that if the stress triaxiality is high enough, ductile fracture can occur at plastic strain lower than that necessary to nucleate damage for moderate or low stress triaxiality regime.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.13212</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Axial stress ; Cohesion ; Computer simulation ; Damage ; Ductile fracture ; Fracture toughness ; Material properties ; micromechanics ; Modelling ; Nucleation ; Plastic deformation ; Strain ; stress triaxiality ; void nucleation ; Yield stress ; α‐iron</subject><ispartof>Fatigue & fracture of engineering materials & structures, 2020-07, Vol.43 (7), p.1473-1486</ispartof><rights>2020 Wiley Publishing Ltd.</rights><rights>2020 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3632-4b9ecce4eb337cc1869efdfb11aa94e8e0527835117ed801fb4e7d2f97dae1a93</citedby><cites>FETCH-LOGICAL-c3632-4b9ecce4eb337cc1869efdfb11aa94e8e0527835117ed801fb4e7d2f97dae1a93</cites><orcidid>0000-0002-8600-7697 ; 0000-0003-3473-630X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fffe.13212$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fffe.13212$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Testa, Gabriel</creatorcontrib><creatorcontrib>Bonora, Nicola</creatorcontrib><creatorcontrib>Ruggiero, Andrew</creatorcontrib><creatorcontrib>Iannitti, Gianluca</creatorcontrib><creatorcontrib>Gentile, Domenico</creatorcontrib><title>Stress triaxiality effect on void nucleation in ductile metals</title><title>Fatigue & fracture of engineering materials & structures</title><description>The stress triaxiality effect on the strain required for void nucleation by particle‐matrix debonding has been investigated by means of micromechanical modelling. A unit‐cell model considering an elastic spherical particle embedded in an elastic‐plastic matrix was developed to the purpose. Particle‐matrix decohesion was simulated through the progressive failure of a cohesive interface. It has been shown that the parameters of matrix‐particle cohesive interface are correlated with macroscopic material properties. Here, a simple relationship for the maximum cohesive opening at interface failure as a function of material fracture toughness and yield stress has been derived. Results seem to confirm that, increasing stress triaxiality, the strain at which void nucleation is predicted to occur decreases exponentially in a similar way as for fracture strain. This result has substantial implications in modelling of ductile damage because it indicates that if the stress triaxiality is high enough, ductile fracture can occur at plastic strain lower than that necessary to nucleate damage for moderate or low stress triaxiality regime.</description><subject>Axial stress</subject><subject>Cohesion</subject><subject>Computer simulation</subject><subject>Damage</subject><subject>Ductile fracture</subject><subject>Fracture toughness</subject><subject>Material properties</subject><subject>micromechanics</subject><subject>Modelling</subject><subject>Nucleation</subject><subject>Plastic deformation</subject><subject>Strain</subject><subject>stress triaxiality</subject><subject>void nucleation</subject><subject>Yield stress</subject><subject>α‐iron</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMouK4e_AcFTx66m0nSpr0IsrgqLHhQwVtI0wlk6bZrkqr7743Wq3N5DHzzhvcIuQS6gDRLa3EBnAE7IjMQJc1ZWRfHZFbJosxlUb2dkrMQtpRCKTifkZvn6DGELHqnv5zuXDxkmExMzIY--xhcm_Wj6VBHl3bXZ-1oousw22HUXTgnJzYJXvzpnLyu715WD_nm6f5xdbvJDS85y0VTozEosOFcGgNVWaNtbQOgdS2wQlowWfECQGJbUbCNQNkyW8tWI-iaz8nV5Lv3w_uIIartMPo-vVRM0EoyoCVP1PVEGT-E4NGqvXc77Q8KqPqpR6Vk6reexC4n9jOlOfwPqvX6brr4BowhZrY</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Testa, Gabriel</creator><creator>Bonora, Nicola</creator><creator>Ruggiero, Andrew</creator><creator>Iannitti, Gianluca</creator><creator>Gentile, Domenico</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-8600-7697</orcidid><orcidid>https://orcid.org/0000-0003-3473-630X</orcidid></search><sort><creationdate>202007</creationdate><title>Stress triaxiality effect on void nucleation in ductile metals</title><author>Testa, Gabriel ; Bonora, Nicola ; Ruggiero, Andrew ; Iannitti, Gianluca ; Gentile, Domenico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3632-4b9ecce4eb337cc1869efdfb11aa94e8e0527835117ed801fb4e7d2f97dae1a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Axial stress</topic><topic>Cohesion</topic><topic>Computer simulation</topic><topic>Damage</topic><topic>Ductile fracture</topic><topic>Fracture toughness</topic><topic>Material properties</topic><topic>micromechanics</topic><topic>Modelling</topic><topic>Nucleation</topic><topic>Plastic deformation</topic><topic>Strain</topic><topic>stress triaxiality</topic><topic>void nucleation</topic><topic>Yield stress</topic><topic>α‐iron</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Testa, Gabriel</creatorcontrib><creatorcontrib>Bonora, Nicola</creatorcontrib><creatorcontrib>Ruggiero, Andrew</creatorcontrib><creatorcontrib>Iannitti, Gianluca</creatorcontrib><creatorcontrib>Gentile, Domenico</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue & fracture of engineering materials & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Testa, Gabriel</au><au>Bonora, Nicola</au><au>Ruggiero, Andrew</au><au>Iannitti, Gianluca</au><au>Gentile, Domenico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress triaxiality effect on void nucleation in ductile metals</atitle><jtitle>Fatigue & fracture of engineering materials & structures</jtitle><date>2020-07</date><risdate>2020</risdate><volume>43</volume><issue>7</issue><spage>1473</spage><epage>1486</epage><pages>1473-1486</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>The stress triaxiality effect on the strain required for void nucleation by particle‐matrix debonding has been investigated by means of micromechanical modelling. A unit‐cell model considering an elastic spherical particle embedded in an elastic‐plastic matrix was developed to the purpose. Particle‐matrix decohesion was simulated through the progressive failure of a cohesive interface. It has been shown that the parameters of matrix‐particle cohesive interface are correlated with macroscopic material properties. Here, a simple relationship for the maximum cohesive opening at interface failure as a function of material fracture toughness and yield stress has been derived. Results seem to confirm that, increasing stress triaxiality, the strain at which void nucleation is predicted to occur decreases exponentially in a similar way as for fracture strain. This result has substantial implications in modelling of ductile damage because it indicates that if the stress triaxiality is high enough, ductile fracture can occur at plastic strain lower than that necessary to nucleate damage for moderate or low stress triaxiality regime.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.13212</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8600-7697</orcidid><orcidid>https://orcid.org/0000-0003-3473-630X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-758X |
ispartof | Fatigue & fracture of engineering materials & structures, 2020-07, Vol.43 (7), p.1473-1486 |
issn | 8756-758X 1460-2695 |
language | eng |
recordid | cdi_proquest_journals_2408721063 |
source | Wiley-Blackwell Journals |
subjects | Axial stress Cohesion Computer simulation Damage Ductile fracture Fracture toughness Material properties micromechanics Modelling Nucleation Plastic deformation Strain stress triaxiality void nucleation Yield stress α‐iron |
title | Stress triaxiality effect on void nucleation in ductile metals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%20triaxiality%20effect%20on%20void%20nucleation%20in%20ductile%20metals&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Testa,%20Gabriel&rft.date=2020-07&rft.volume=43&rft.issue=7&rft.spage=1473&rft.epage=1486&rft.pages=1473-1486&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.13212&rft_dat=%3Cproquest_cross%3E2408721063%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408721063&rft_id=info:pmid/&rfr_iscdi=true |