Evolutionary intelligence for breast lesion detection in ultrasound images: A wavelet modulus maxima and SVM based approach

Intelligent lesion detection system for medical ultrasound images are aimed at reducing physicians’ effort during cancer diagnosis process. Automatic separation and classification of tumours in ultrasound images is challenging owing to the low contrast and noisy behavior of the image. A Computer aid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2020-01, Vol.38 (5), p.6279-6290
Hauptverfasser: Shiji, T. P., Remya, S., Lakshmanan, Rekha, Pratab, Thara, Thomas, Vinu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6290
container_issue 5
container_start_page 6279
container_title Journal of intelligent & fuzzy systems
container_volume 38
creator Shiji, T. P.
Remya, S.
Lakshmanan, Rekha
Pratab, Thara
Thomas, Vinu
description Intelligent lesion detection system for medical ultrasound images are aimed at reducing physicians’ effort during cancer diagnosis process. Automatic separation and classification of tumours in ultrasound images is challenging owing to the low contrast and noisy behavior of the image. A Computer aided detection (CAD) system that automatically segment and classify breast tumours in ultrasound (US) images is proposed in this paper. The proposed method is invariant to scale changes and does not require an operator defined initial region of interest. Wavelet modulus maxima points of the US image are analyzed to extract the tumour seed point. The lesions segmented using a region-based approach are classified using a support vector machine (SVM) classifier. Evaluation of various performance measures show that the performance of the proposed CAD system is promising.
doi_str_mv 10.3233/JIFS-179709
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2408552455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2408552455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-66f5b96a98f187f05128fa1b0486623f8384a305fc46d2e13c3d8ed5855aa35b3</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKsn_0DAo6zmY5PNeiul1UrFQ9XrMrub1JZ0U5NstfjnTamnGZiHeWcehK4pueOM8_vn2XSR0aIsSHmCBlQVIlOlLE5TT2SeUZbLc3QRwpoQWghGBuh3snO2jyvXgd_jVRe1taul7hqNjfO49hpCxFaHROBWR90c2ATi3kYPwfVdi1cbWOrwgEf4G3ba6og3ru1tH_AGftIQQ4IWHy-4hqBbDNutd9B8XqIzAzboq_86RO_Tydv4KZu_Ps7Go3nWMEljJqURdSmhVCZ9ZIigTBmgNcmVlIwbxVUOnAjT5LJlmvKGt0q3QgkBwEXNh-jmuDfFfvU6xGrtet-lyIrlJGEsFyJRt0eq8S4Er0219el2v68oqQ52q4Pd6miX_wHtEG4U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408552455</pqid></control><display><type>article</type><title>Evolutionary intelligence for breast lesion detection in ultrasound images: A wavelet modulus maxima and SVM based approach</title><source>EBSCOhost Business Source Complete</source><creator>Shiji, T. P. ; Remya, S. ; Lakshmanan, Rekha ; Pratab, Thara ; Thomas, Vinu</creator><contributor>Trajkovic, Ljiljana ; El-Alfy, El-Sayed M. ; Thampi, Sabu M.</contributor><creatorcontrib>Shiji, T. P. ; Remya, S. ; Lakshmanan, Rekha ; Pratab, Thara ; Thomas, Vinu ; Trajkovic, Ljiljana ; El-Alfy, El-Sayed M. ; Thampi, Sabu M.</creatorcontrib><description>Intelligent lesion detection system for medical ultrasound images are aimed at reducing physicians’ effort during cancer diagnosis process. Automatic separation and classification of tumours in ultrasound images is challenging owing to the low contrast and noisy behavior of the image. A Computer aided detection (CAD) system that automatically segment and classify breast tumours in ultrasound (US) images is proposed in this paper. The proposed method is invariant to scale changes and does not require an operator defined initial region of interest. Wavelet modulus maxima points of the US image are analyzed to extract the tumour seed point. The lesions segmented using a region-based approach are classified using a support vector machine (SVM) classifier. Evaluation of various performance measures show that the performance of the proposed CAD system is promising.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-179709</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Image classification ; Image contrast ; Image detection ; Medical imaging ; Performance evaluation ; Physicians ; Support vector machines ; Tumors ; Ultrasonic imaging ; Ultrasound</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2020-01, Vol.38 (5), p.6279-6290</ispartof><rights>Copyright IOS Press BV 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-66f5b96a98f187f05128fa1b0486623f8384a305fc46d2e13c3d8ed5855aa35b3</citedby><cites>FETCH-LOGICAL-c261t-66f5b96a98f187f05128fa1b0486623f8384a305fc46d2e13c3d8ed5855aa35b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Trajkovic, Ljiljana</contributor><contributor>El-Alfy, El-Sayed M.</contributor><contributor>Thampi, Sabu M.</contributor><creatorcontrib>Shiji, T. P.</creatorcontrib><creatorcontrib>Remya, S.</creatorcontrib><creatorcontrib>Lakshmanan, Rekha</creatorcontrib><creatorcontrib>Pratab, Thara</creatorcontrib><creatorcontrib>Thomas, Vinu</creatorcontrib><title>Evolutionary intelligence for breast lesion detection in ultrasound images: A wavelet modulus maxima and SVM based approach</title><title>Journal of intelligent &amp; fuzzy systems</title><description>Intelligent lesion detection system for medical ultrasound images are aimed at reducing physicians’ effort during cancer diagnosis process. Automatic separation and classification of tumours in ultrasound images is challenging owing to the low contrast and noisy behavior of the image. A Computer aided detection (CAD) system that automatically segment and classify breast tumours in ultrasound (US) images is proposed in this paper. The proposed method is invariant to scale changes and does not require an operator defined initial region of interest. Wavelet modulus maxima points of the US image are analyzed to extract the tumour seed point. The lesions segmented using a region-based approach are classified using a support vector machine (SVM) classifier. Evaluation of various performance measures show that the performance of the proposed CAD system is promising.</description><subject>Image classification</subject><subject>Image contrast</subject><subject>Image detection</subject><subject>Medical imaging</subject><subject>Performance evaluation</subject><subject>Physicians</subject><subject>Support vector machines</subject><subject>Tumors</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKsn_0DAo6zmY5PNeiul1UrFQ9XrMrub1JZ0U5NstfjnTamnGZiHeWcehK4pueOM8_vn2XSR0aIsSHmCBlQVIlOlLE5TT2SeUZbLc3QRwpoQWghGBuh3snO2jyvXgd_jVRe1taul7hqNjfO49hpCxFaHROBWR90c2ATi3kYPwfVdi1cbWOrwgEf4G3ba6og3ru1tH_AGftIQQ4IWHy-4hqBbDNutd9B8XqIzAzboq_86RO_Tydv4KZu_Ps7Go3nWMEljJqURdSmhVCZ9ZIigTBmgNcmVlIwbxVUOnAjT5LJlmvKGt0q3QgkBwEXNh-jmuDfFfvU6xGrtet-lyIrlJGEsFyJRt0eq8S4Er0219el2v68oqQ52q4Pd6miX_wHtEG4U</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Shiji, T. P.</creator><creator>Remya, S.</creator><creator>Lakshmanan, Rekha</creator><creator>Pratab, Thara</creator><creator>Thomas, Vinu</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200101</creationdate><title>Evolutionary intelligence for breast lesion detection in ultrasound images: A wavelet modulus maxima and SVM based approach</title><author>Shiji, T. P. ; Remya, S. ; Lakshmanan, Rekha ; Pratab, Thara ; Thomas, Vinu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-66f5b96a98f187f05128fa1b0486623f8384a305fc46d2e13c3d8ed5855aa35b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Image classification</topic><topic>Image contrast</topic><topic>Image detection</topic><topic>Medical imaging</topic><topic>Performance evaluation</topic><topic>Physicians</topic><topic>Support vector machines</topic><topic>Tumors</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shiji, T. P.</creatorcontrib><creatorcontrib>Remya, S.</creatorcontrib><creatorcontrib>Lakshmanan, Rekha</creatorcontrib><creatorcontrib>Pratab, Thara</creatorcontrib><creatorcontrib>Thomas, Vinu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shiji, T. P.</au><au>Remya, S.</au><au>Lakshmanan, Rekha</au><au>Pratab, Thara</au><au>Thomas, Vinu</au><au>Trajkovic, Ljiljana</au><au>El-Alfy, El-Sayed M.</au><au>Thampi, Sabu M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary intelligence for breast lesion detection in ultrasound images: A wavelet modulus maxima and SVM based approach</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>38</volume><issue>5</issue><spage>6279</spage><epage>6290</epage><pages>6279-6290</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Intelligent lesion detection system for medical ultrasound images are aimed at reducing physicians’ effort during cancer diagnosis process. Automatic separation and classification of tumours in ultrasound images is challenging owing to the low contrast and noisy behavior of the image. A Computer aided detection (CAD) system that automatically segment and classify breast tumours in ultrasound (US) images is proposed in this paper. The proposed method is invariant to scale changes and does not require an operator defined initial region of interest. Wavelet modulus maxima points of the US image are analyzed to extract the tumour seed point. The lesions segmented using a region-based approach are classified using a support vector machine (SVM) classifier. Evaluation of various performance measures show that the performance of the proposed CAD system is promising.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-179709</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2020-01, Vol.38 (5), p.6279-6290
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2408552455
source EBSCOhost Business Source Complete
subjects Image classification
Image contrast
Image detection
Medical imaging
Performance evaluation
Physicians
Support vector machines
Tumors
Ultrasonic imaging
Ultrasound
title Evolutionary intelligence for breast lesion detection in ultrasound images: A wavelet modulus maxima and SVM based approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20intelligence%20for%20breast%20lesion%20detection%20in%20ultrasound%20images:%20A%20wavelet%20modulus%20maxima%20and%20SVM%20based%20approach&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Shiji,%20T.%20P.&rft.date=2020-01-01&rft.volume=38&rft.issue=5&rft.spage=6279&rft.epage=6290&rft.pages=6279-6290&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-179709&rft_dat=%3Cproquest_cross%3E2408552455%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408552455&rft_id=info:pmid/&rfr_iscdi=true