Evolutionary intelligence for breast lesion detection in ultrasound images: A wavelet modulus maxima and SVM based approach
Intelligent lesion detection system for medical ultrasound images are aimed at reducing physicians’ effort during cancer diagnosis process. Automatic separation and classification of tumours in ultrasound images is challenging owing to the low contrast and noisy behavior of the image. A Computer aid...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2020-01, Vol.38 (5), p.6279-6290 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6290 |
---|---|
container_issue | 5 |
container_start_page | 6279 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 38 |
creator | Shiji, T. P. Remya, S. Lakshmanan, Rekha Pratab, Thara Thomas, Vinu |
description | Intelligent lesion detection system for medical ultrasound images are aimed at reducing physicians’ effort during cancer diagnosis process. Automatic separation and classification of tumours in ultrasound images is challenging owing to the low contrast and noisy behavior of the image. A Computer aided detection (CAD) system that automatically segment and classify breast tumours in ultrasound (US) images is proposed in this paper. The proposed method is invariant to scale changes and does not require an operator defined initial region of interest. Wavelet modulus maxima points of the US image are analyzed to extract the tumour seed point. The lesions segmented using a region-based approach are classified using a support vector machine (SVM) classifier. Evaluation of various performance measures show that the performance of the proposed CAD system is promising. |
doi_str_mv | 10.3233/JIFS-179709 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2408552455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2408552455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-66f5b96a98f187f05128fa1b0486623f8384a305fc46d2e13c3d8ed5855aa35b3</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKsn_0DAo6zmY5PNeiul1UrFQ9XrMrub1JZ0U5NstfjnTamnGZiHeWcehK4pueOM8_vn2XSR0aIsSHmCBlQVIlOlLE5TT2SeUZbLc3QRwpoQWghGBuh3snO2jyvXgd_jVRe1taul7hqNjfO49hpCxFaHROBWR90c2ATi3kYPwfVdi1cbWOrwgEf4G3ba6og3ru1tH_AGftIQQ4IWHy-4hqBbDNutd9B8XqIzAzboq_86RO_Tydv4KZu_Ps7Go3nWMEljJqURdSmhVCZ9ZIigTBmgNcmVlIwbxVUOnAjT5LJlmvKGt0q3QgkBwEXNh-jmuDfFfvU6xGrtet-lyIrlJGEsFyJRt0eq8S4Er0219el2v68oqQ52q4Pd6miX_wHtEG4U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408552455</pqid></control><display><type>article</type><title>Evolutionary intelligence for breast lesion detection in ultrasound images: A wavelet modulus maxima and SVM based approach</title><source>EBSCOhost Business Source Complete</source><creator>Shiji, T. P. ; Remya, S. ; Lakshmanan, Rekha ; Pratab, Thara ; Thomas, Vinu</creator><contributor>Trajkovic, Ljiljana ; El-Alfy, El-Sayed M. ; Thampi, Sabu M.</contributor><creatorcontrib>Shiji, T. P. ; Remya, S. ; Lakshmanan, Rekha ; Pratab, Thara ; Thomas, Vinu ; Trajkovic, Ljiljana ; El-Alfy, El-Sayed M. ; Thampi, Sabu M.</creatorcontrib><description>Intelligent lesion detection system for medical ultrasound images are aimed at reducing physicians’ effort during cancer diagnosis process. Automatic separation and classification of tumours in ultrasound images is challenging owing to the low contrast and noisy behavior of the image. A Computer aided detection (CAD) system that automatically segment and classify breast tumours in ultrasound (US) images is proposed in this paper. The proposed method is invariant to scale changes and does not require an operator defined initial region of interest. Wavelet modulus maxima points of the US image are analyzed to extract the tumour seed point. The lesions segmented using a region-based approach are classified using a support vector machine (SVM) classifier. Evaluation of various performance measures show that the performance of the proposed CAD system is promising.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-179709</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Image classification ; Image contrast ; Image detection ; Medical imaging ; Performance evaluation ; Physicians ; Support vector machines ; Tumors ; Ultrasonic imaging ; Ultrasound</subject><ispartof>Journal of intelligent & fuzzy systems, 2020-01, Vol.38 (5), p.6279-6290</ispartof><rights>Copyright IOS Press BV 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-66f5b96a98f187f05128fa1b0486623f8384a305fc46d2e13c3d8ed5855aa35b3</citedby><cites>FETCH-LOGICAL-c261t-66f5b96a98f187f05128fa1b0486623f8384a305fc46d2e13c3d8ed5855aa35b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Trajkovic, Ljiljana</contributor><contributor>El-Alfy, El-Sayed M.</contributor><contributor>Thampi, Sabu M.</contributor><creatorcontrib>Shiji, T. P.</creatorcontrib><creatorcontrib>Remya, S.</creatorcontrib><creatorcontrib>Lakshmanan, Rekha</creatorcontrib><creatorcontrib>Pratab, Thara</creatorcontrib><creatorcontrib>Thomas, Vinu</creatorcontrib><title>Evolutionary intelligence for breast lesion detection in ultrasound images: A wavelet modulus maxima and SVM based approach</title><title>Journal of intelligent & fuzzy systems</title><description>Intelligent lesion detection system for medical ultrasound images are aimed at reducing physicians’ effort during cancer diagnosis process. Automatic separation and classification of tumours in ultrasound images is challenging owing to the low contrast and noisy behavior of the image. A Computer aided detection (CAD) system that automatically segment and classify breast tumours in ultrasound (US) images is proposed in this paper. The proposed method is invariant to scale changes and does not require an operator defined initial region of interest. Wavelet modulus maxima points of the US image are analyzed to extract the tumour seed point. The lesions segmented using a region-based approach are classified using a support vector machine (SVM) classifier. Evaluation of various performance measures show that the performance of the proposed CAD system is promising.</description><subject>Image classification</subject><subject>Image contrast</subject><subject>Image detection</subject><subject>Medical imaging</subject><subject>Performance evaluation</subject><subject>Physicians</subject><subject>Support vector machines</subject><subject>Tumors</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKsn_0DAo6zmY5PNeiul1UrFQ9XrMrub1JZ0U5NstfjnTamnGZiHeWcehK4pueOM8_vn2XSR0aIsSHmCBlQVIlOlLE5TT2SeUZbLc3QRwpoQWghGBuh3snO2jyvXgd_jVRe1taul7hqNjfO49hpCxFaHROBWR90c2ATi3kYPwfVdi1cbWOrwgEf4G3ba6og3ru1tH_AGftIQQ4IWHy-4hqBbDNutd9B8XqIzAzboq_86RO_Tydv4KZu_Ps7Go3nWMEljJqURdSmhVCZ9ZIigTBmgNcmVlIwbxVUOnAjT5LJlmvKGt0q3QgkBwEXNh-jmuDfFfvU6xGrtet-lyIrlJGEsFyJRt0eq8S4Er0219el2v68oqQ52q4Pd6miX_wHtEG4U</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Shiji, T. P.</creator><creator>Remya, S.</creator><creator>Lakshmanan, Rekha</creator><creator>Pratab, Thara</creator><creator>Thomas, Vinu</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200101</creationdate><title>Evolutionary intelligence for breast lesion detection in ultrasound images: A wavelet modulus maxima and SVM based approach</title><author>Shiji, T. P. ; Remya, S. ; Lakshmanan, Rekha ; Pratab, Thara ; Thomas, Vinu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-66f5b96a98f187f05128fa1b0486623f8384a305fc46d2e13c3d8ed5855aa35b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Image classification</topic><topic>Image contrast</topic><topic>Image detection</topic><topic>Medical imaging</topic><topic>Performance evaluation</topic><topic>Physicians</topic><topic>Support vector machines</topic><topic>Tumors</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shiji, T. P.</creatorcontrib><creatorcontrib>Remya, S.</creatorcontrib><creatorcontrib>Lakshmanan, Rekha</creatorcontrib><creatorcontrib>Pratab, Thara</creatorcontrib><creatorcontrib>Thomas, Vinu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shiji, T. P.</au><au>Remya, S.</au><au>Lakshmanan, Rekha</au><au>Pratab, Thara</au><au>Thomas, Vinu</au><au>Trajkovic, Ljiljana</au><au>El-Alfy, El-Sayed M.</au><au>Thampi, Sabu M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary intelligence for breast lesion detection in ultrasound images: A wavelet modulus maxima and SVM based approach</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>38</volume><issue>5</issue><spage>6279</spage><epage>6290</epage><pages>6279-6290</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Intelligent lesion detection system for medical ultrasound images are aimed at reducing physicians’ effort during cancer diagnosis process. Automatic separation and classification of tumours in ultrasound images is challenging owing to the low contrast and noisy behavior of the image. A Computer aided detection (CAD) system that automatically segment and classify breast tumours in ultrasound (US) images is proposed in this paper. The proposed method is invariant to scale changes and does not require an operator defined initial region of interest. Wavelet modulus maxima points of the US image are analyzed to extract the tumour seed point. The lesions segmented using a region-based approach are classified using a support vector machine (SVM) classifier. Evaluation of various performance measures show that the performance of the proposed CAD system is promising.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-179709</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2020-01, Vol.38 (5), p.6279-6290 |
issn | 1064-1246 1875-8967 |
language | eng |
recordid | cdi_proquest_journals_2408552455 |
source | EBSCOhost Business Source Complete |
subjects | Image classification Image contrast Image detection Medical imaging Performance evaluation Physicians Support vector machines Tumors Ultrasonic imaging Ultrasound |
title | Evolutionary intelligence for breast lesion detection in ultrasound images: A wavelet modulus maxima and SVM based approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20intelligence%20for%20breast%20lesion%20detection%20in%20ultrasound%20images:%20A%20wavelet%20modulus%20maxima%20and%20SVM%20based%20approach&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Shiji,%20T.%20P.&rft.date=2020-01-01&rft.volume=38&rft.issue=5&rft.spage=6279&rft.epage=6290&rft.pages=6279-6290&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-179709&rft_dat=%3Cproquest_cross%3E2408552455%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408552455&rft_id=info:pmid/&rfr_iscdi=true |