Solving word sense disambiguation problem using combinatorial PSO

In natural language processing, the problem of finding the intended meaning or “sense” of a word which is activated by the use of that word in a particular context is generally known as word sense disambiguation (WSD) problem. The solution to this problem impacts many other fields of natural languag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2020-01, Vol.38 (5), p.6193-6200
Hauptverfasser: Ajeena Beegom, A.S., Chinmayan, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6200
container_issue 5
container_start_page 6193
container_title Journal of intelligent & fuzzy systems
container_volume 38
creator Ajeena Beegom, A.S.
Chinmayan, P.
description In natural language processing, the problem of finding the intended meaning or “sense” of a word which is activated by the use of that word in a particular context is generally known as word sense disambiguation (WSD) problem. The solution to this problem impacts many other fields of natural language processing including sentiment analysis and machine translation. Here, WSD problem is modelled as a combinatorial optimization problem where the goal is to find a sequence of meanings or senses that maximizes the semantic meaning among the targeted words. In this work, an algorithm is proposed that uses a combinatorial version of particle swarm optimization algorithm for solving WSD problem. The test results show that the algorithm performs better than existing methods.
doi_str_mv 10.3233/JIFS-179701
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2408552448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2408552448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-22cfe4ffbcc3ae141c5d708c4fb7629a02d9a35691646c9b6b2c1045ec6c76563</originalsourceid><addsrcrecordid>eNotkF1LwzAUhoMoOKdX_oGClxLNd5rLMdycDCZUr0OaJqOjbWbSKv57W-rVOXAezvvyAHCP0RMllD6_7TYFxFJJhC_AAueSw1wJeTnuSDCICRPX4CalE0JYcoIWYFWE5rvujtlPiFWWXJdcVtXJtGV9HExfhy47x1A2rs2GNHE2jKfO9CHWpsnei8MtuPKmSe7ufy7B5-blY_0K94ftbr3aQ0sE7iEh1jvmfWktNQ4zbHklUW6ZL6UgyiBSKUO5UFgwYVUpSmIxYtxZYaXggi7Bw_x37PM1uNTrUxhiN0ZqwlDOOWEsH6nHmbIxpBSd1-dYtyb-aoz05EhPjvTsiP4ByT5ZMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408552448</pqid></control><display><type>article</type><title>Solving word sense disambiguation problem using combinatorial PSO</title><source>Business Source Complete</source><creator>Ajeena Beegom, A.S. ; Chinmayan, P.</creator><creatorcontrib>Ajeena Beegom, A.S. ; Chinmayan, P.</creatorcontrib><description>In natural language processing, the problem of finding the intended meaning or “sense” of a word which is activated by the use of that word in a particular context is generally known as word sense disambiguation (WSD) problem. The solution to this problem impacts many other fields of natural language processing including sentiment analysis and machine translation. Here, WSD problem is modelled as a combinatorial optimization problem where the goal is to find a sequence of meanings or senses that maximizes the semantic meaning among the targeted words. In this work, an algorithm is proposed that uses a combinatorial version of particle swarm optimization algorithm for solving WSD problem. The test results show that the algorithm performs better than existing methods.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-179701</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Algorithms ; Combinatorial analysis ; Data mining ; Function words ; Machine translation ; Meaning ; Natural language processing ; Particle swarm optimization ; Semantics ; Sentiment analysis ; Word sense disambiguation ; Words (language)</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2020-01, Vol.38 (5), p.6193-6200</ispartof><rights>Copyright IOS Press BV 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-22cfe4ffbcc3ae141c5d708c4fb7629a02d9a35691646c9b6b2c1045ec6c76563</citedby><cites>FETCH-LOGICAL-c261t-22cfe4ffbcc3ae141c5d708c4fb7629a02d9a35691646c9b6b2c1045ec6c76563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ajeena Beegom, A.S.</creatorcontrib><creatorcontrib>Chinmayan, P.</creatorcontrib><title>Solving word sense disambiguation problem using combinatorial PSO</title><title>Journal of intelligent &amp; fuzzy systems</title><description>In natural language processing, the problem of finding the intended meaning or “sense” of a word which is activated by the use of that word in a particular context is generally known as word sense disambiguation (WSD) problem. The solution to this problem impacts many other fields of natural language processing including sentiment analysis and machine translation. Here, WSD problem is modelled as a combinatorial optimization problem where the goal is to find a sequence of meanings or senses that maximizes the semantic meaning among the targeted words. In this work, an algorithm is proposed that uses a combinatorial version of particle swarm optimization algorithm for solving WSD problem. The test results show that the algorithm performs better than existing methods.</description><subject>Algorithms</subject><subject>Combinatorial analysis</subject><subject>Data mining</subject><subject>Function words</subject><subject>Machine translation</subject><subject>Meaning</subject><subject>Natural language processing</subject><subject>Particle swarm optimization</subject><subject>Semantics</subject><subject>Sentiment analysis</subject><subject>Word sense disambiguation</subject><subject>Words (language)</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkF1LwzAUhoMoOKdX_oGClxLNd5rLMdycDCZUr0OaJqOjbWbSKv57W-rVOXAezvvyAHCP0RMllD6_7TYFxFJJhC_AAueSw1wJeTnuSDCICRPX4CalE0JYcoIWYFWE5rvujtlPiFWWXJdcVtXJtGV9HExfhy47x1A2rs2GNHE2jKfO9CHWpsnei8MtuPKmSe7ufy7B5-blY_0K94ftbr3aQ0sE7iEh1jvmfWktNQ4zbHklUW6ZL6UgyiBSKUO5UFgwYVUpSmIxYtxZYaXggi7Bw_x37PM1uNTrUxhiN0ZqwlDOOWEsH6nHmbIxpBSd1-dYtyb-aoz05EhPjvTsiP4ByT5ZMg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Ajeena Beegom, A.S.</creator><creator>Chinmayan, P.</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7T9</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200101</creationdate><title>Solving word sense disambiguation problem using combinatorial PSO</title><author>Ajeena Beegom, A.S. ; Chinmayan, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-22cfe4ffbcc3ae141c5d708c4fb7629a02d9a35691646c9b6b2c1045ec6c76563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Combinatorial analysis</topic><topic>Data mining</topic><topic>Function words</topic><topic>Machine translation</topic><topic>Meaning</topic><topic>Natural language processing</topic><topic>Particle swarm optimization</topic><topic>Semantics</topic><topic>Sentiment analysis</topic><topic>Word sense disambiguation</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ajeena Beegom, A.S.</creatorcontrib><creatorcontrib>Chinmayan, P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ajeena Beegom, A.S.</au><au>Chinmayan, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving word sense disambiguation problem using combinatorial PSO</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>38</volume><issue>5</issue><spage>6193</spage><epage>6200</epage><pages>6193-6200</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>In natural language processing, the problem of finding the intended meaning or “sense” of a word which is activated by the use of that word in a particular context is generally known as word sense disambiguation (WSD) problem. The solution to this problem impacts many other fields of natural language processing including sentiment analysis and machine translation. Here, WSD problem is modelled as a combinatorial optimization problem where the goal is to find a sequence of meanings or senses that maximizes the semantic meaning among the targeted words. In this work, an algorithm is proposed that uses a combinatorial version of particle swarm optimization algorithm for solving WSD problem. The test results show that the algorithm performs better than existing methods.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-179701</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2020-01, Vol.38 (5), p.6193-6200
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2408552448
source Business Source Complete
subjects Algorithms
Combinatorial analysis
Data mining
Function words
Machine translation
Meaning
Natural language processing
Particle swarm optimization
Semantics
Sentiment analysis
Word sense disambiguation
Words (language)
title Solving word sense disambiguation problem using combinatorial PSO
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A42%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20word%20sense%20disambiguation%20problem%20using%20combinatorial%20PSO&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Ajeena%20Beegom,%20A.S.&rft.date=2020-01-01&rft.volume=38&rft.issue=5&rft.spage=6193&rft.epage=6200&rft.pages=6193-6200&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-179701&rft_dat=%3Cproquest_cross%3E2408552448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408552448&rft_id=info:pmid/&rfr_iscdi=true