Solving word sense disambiguation problem using combinatorial PSO
In natural language processing, the problem of finding the intended meaning or “sense” of a word which is activated by the use of that word in a particular context is generally known as word sense disambiguation (WSD) problem. The solution to this problem impacts many other fields of natural languag...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2020-01, Vol.38 (5), p.6193-6200 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6200 |
---|---|
container_issue | 5 |
container_start_page | 6193 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 38 |
creator | Ajeena Beegom, A.S. Chinmayan, P. |
description | In natural language processing, the problem of finding the intended meaning or “sense” of a word which is activated by the use of that word in a particular context is generally known as word sense disambiguation (WSD) problem. The solution to this problem impacts many other fields of natural language processing including sentiment analysis and machine translation. Here, WSD problem is modelled as a combinatorial optimization problem where the goal is to find a sequence of meanings or senses that maximizes the semantic meaning among the targeted words. In this work, an algorithm is proposed that uses a combinatorial version of particle swarm optimization algorithm for solving WSD problem. The test results show that the algorithm performs better than existing methods. |
doi_str_mv | 10.3233/JIFS-179701 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2408552448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2408552448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-22cfe4ffbcc3ae141c5d708c4fb7629a02d9a35691646c9b6b2c1045ec6c76563</originalsourceid><addsrcrecordid>eNotkF1LwzAUhoMoOKdX_oGClxLNd5rLMdycDCZUr0OaJqOjbWbSKv57W-rVOXAezvvyAHCP0RMllD6_7TYFxFJJhC_AAueSw1wJeTnuSDCICRPX4CalE0JYcoIWYFWE5rvujtlPiFWWXJdcVtXJtGV9HExfhy47x1A2rs2GNHE2jKfO9CHWpsnei8MtuPKmSe7ufy7B5-blY_0K94ftbr3aQ0sE7iEh1jvmfWktNQ4zbHklUW6ZL6UgyiBSKUO5UFgwYVUpSmIxYtxZYaXggi7Bw_x37PM1uNTrUxhiN0ZqwlDOOWEsH6nHmbIxpBSd1-dYtyb-aoz05EhPjvTsiP4ByT5ZMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408552448</pqid></control><display><type>article</type><title>Solving word sense disambiguation problem using combinatorial PSO</title><source>Business Source Complete</source><creator>Ajeena Beegom, A.S. ; Chinmayan, P.</creator><creatorcontrib>Ajeena Beegom, A.S. ; Chinmayan, P.</creatorcontrib><description>In natural language processing, the problem of finding the intended meaning or “sense” of a word which is activated by the use of that word in a particular context is generally known as word sense disambiguation (WSD) problem. The solution to this problem impacts many other fields of natural language processing including sentiment analysis and machine translation. Here, WSD problem is modelled as a combinatorial optimization problem where the goal is to find a sequence of meanings or senses that maximizes the semantic meaning among the targeted words. In this work, an algorithm is proposed that uses a combinatorial version of particle swarm optimization algorithm for solving WSD problem. The test results show that the algorithm performs better than existing methods.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-179701</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Algorithms ; Combinatorial analysis ; Data mining ; Function words ; Machine translation ; Meaning ; Natural language processing ; Particle swarm optimization ; Semantics ; Sentiment analysis ; Word sense disambiguation ; Words (language)</subject><ispartof>Journal of intelligent & fuzzy systems, 2020-01, Vol.38 (5), p.6193-6200</ispartof><rights>Copyright IOS Press BV 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-22cfe4ffbcc3ae141c5d708c4fb7629a02d9a35691646c9b6b2c1045ec6c76563</citedby><cites>FETCH-LOGICAL-c261t-22cfe4ffbcc3ae141c5d708c4fb7629a02d9a35691646c9b6b2c1045ec6c76563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ajeena Beegom, A.S.</creatorcontrib><creatorcontrib>Chinmayan, P.</creatorcontrib><title>Solving word sense disambiguation problem using combinatorial PSO</title><title>Journal of intelligent & fuzzy systems</title><description>In natural language processing, the problem of finding the intended meaning or “sense” of a word which is activated by the use of that word in a particular context is generally known as word sense disambiguation (WSD) problem. The solution to this problem impacts many other fields of natural language processing including sentiment analysis and machine translation. Here, WSD problem is modelled as a combinatorial optimization problem where the goal is to find a sequence of meanings or senses that maximizes the semantic meaning among the targeted words. In this work, an algorithm is proposed that uses a combinatorial version of particle swarm optimization algorithm for solving WSD problem. The test results show that the algorithm performs better than existing methods.</description><subject>Algorithms</subject><subject>Combinatorial analysis</subject><subject>Data mining</subject><subject>Function words</subject><subject>Machine translation</subject><subject>Meaning</subject><subject>Natural language processing</subject><subject>Particle swarm optimization</subject><subject>Semantics</subject><subject>Sentiment analysis</subject><subject>Word sense disambiguation</subject><subject>Words (language)</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkF1LwzAUhoMoOKdX_oGClxLNd5rLMdycDCZUr0OaJqOjbWbSKv57W-rVOXAezvvyAHCP0RMllD6_7TYFxFJJhC_AAueSw1wJeTnuSDCICRPX4CalE0JYcoIWYFWE5rvujtlPiFWWXJdcVtXJtGV9HExfhy47x1A2rs2GNHE2jKfO9CHWpsnei8MtuPKmSe7ufy7B5-blY_0K94ftbr3aQ0sE7iEh1jvmfWktNQ4zbHklUW6ZL6UgyiBSKUO5UFgwYVUpSmIxYtxZYaXggi7Bw_x37PM1uNTrUxhiN0ZqwlDOOWEsH6nHmbIxpBSd1-dYtyb-aoz05EhPjvTsiP4ByT5ZMg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Ajeena Beegom, A.S.</creator><creator>Chinmayan, P.</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7T9</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200101</creationdate><title>Solving word sense disambiguation problem using combinatorial PSO</title><author>Ajeena Beegom, A.S. ; Chinmayan, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-22cfe4ffbcc3ae141c5d708c4fb7629a02d9a35691646c9b6b2c1045ec6c76563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Combinatorial analysis</topic><topic>Data mining</topic><topic>Function words</topic><topic>Machine translation</topic><topic>Meaning</topic><topic>Natural language processing</topic><topic>Particle swarm optimization</topic><topic>Semantics</topic><topic>Sentiment analysis</topic><topic>Word sense disambiguation</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ajeena Beegom, A.S.</creatorcontrib><creatorcontrib>Chinmayan, P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ajeena Beegom, A.S.</au><au>Chinmayan, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving word sense disambiguation problem using combinatorial PSO</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>38</volume><issue>5</issue><spage>6193</spage><epage>6200</epage><pages>6193-6200</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>In natural language processing, the problem of finding the intended meaning or “sense” of a word which is activated by the use of that word in a particular context is generally known as word sense disambiguation (WSD) problem. The solution to this problem impacts many other fields of natural language processing including sentiment analysis and machine translation. Here, WSD problem is modelled as a combinatorial optimization problem where the goal is to find a sequence of meanings or senses that maximizes the semantic meaning among the targeted words. In this work, an algorithm is proposed that uses a combinatorial version of particle swarm optimization algorithm for solving WSD problem. The test results show that the algorithm performs better than existing methods.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-179701</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2020-01, Vol.38 (5), p.6193-6200 |
issn | 1064-1246 1875-8967 |
language | eng |
recordid | cdi_proquest_journals_2408552448 |
source | Business Source Complete |
subjects | Algorithms Combinatorial analysis Data mining Function words Machine translation Meaning Natural language processing Particle swarm optimization Semantics Sentiment analysis Word sense disambiguation Words (language) |
title | Solving word sense disambiguation problem using combinatorial PSO |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A42%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20word%20sense%20disambiguation%20problem%20using%20combinatorial%20PSO&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Ajeena%20Beegom,%20A.S.&rft.date=2020-01-01&rft.volume=38&rft.issue=5&rft.spage=6193&rft.epage=6200&rft.pages=6193-6200&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-179701&rft_dat=%3Cproquest_cross%3E2408552448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408552448&rft_id=info:pmid/&rfr_iscdi=true |