Improving the safety of human pluripotent stem cell therapies using genome-edited orthogonal safeguards
Despite their rapidly-expanding therapeutic potential, human pluripotent stem cell (hPSC)-derived cell therapies continue to have serious safety risks. Transplantation of hPSC-derived cell populations into preclinical models has generated teratomas (tumors arising from undifferentiated hPSCs), unwan...
Gespeichert in:
Veröffentlicht in: | Nature communications 2020-06, Vol.11 (1), p.2713-14, Article 2713 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 1 |
container_start_page | 2713 |
container_title | Nature communications |
container_volume | 11 |
creator | Martin, Renata M. Fowler, Jonas L. Cromer, M. Kyle Lesch, Benjamin J. Ponce, Ezequiel Uchida, Nobuko Nishimura, Toshinobu Porteus, Matthew H. Loh, Kyle M. |
description | Despite their rapidly-expanding therapeutic potential, human pluripotent stem cell (hPSC)-derived cell therapies continue to have serious safety risks. Transplantation of hPSC-derived cell populations into preclinical models has generated teratomas (tumors arising from undifferentiated hPSCs), unwanted tissues, and other types of adverse events. Mitigating these risks is important to increase the safety of such therapies. Here we use genome editing to engineer a general platform to improve the safety of future hPSC-derived cell transplantation therapies. Specifically, we develop hPSC lines bearing two drug-inducible safeguards, which have distinct functionalities and address separate safety concerns. In vitro administration of one small molecule depletes undifferentiated hPSCs >10
6
-fold, thus preventing teratoma formation in vivo. Administration of a second small molecule kills all hPSC-derived cell-types, thus providing an option to eliminate the entire hPSC-derived cell product in vivo if adverse events arise. These orthogonal safety switches address major safety concerns with pluripotent cell-derived therapies.
Human pluripotent stem cell derived therapies can have serious safety risks. Here the authors design two drug inducible genetic safeguards to deplete undifferentiated hPSCs and hPSC-derived cell types. |
doi_str_mv | 10.1038/s41467-020-16455-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2408527387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1bf355be0de745bc987455ce3536745a</doaj_id><sourcerecordid>2408527387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-f61fc43ddecc3980c37dc4479f460158e5b69e0ca77e8b485cbe57afe02f4bea3</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEolXpH2CBIrFEAT9jZ4OERjxGqsQG1pbjXGc8SuJgO0X993UmZWg3CG-uZX_n2L7HRfEao_cYUfkhMsxqUSGCKlwzzivxrLgkiOEKC0KfP5pfFNcxHlEetMGSsZfFBSVMUkzEZdHvxzn4Wzf1ZTpAGbWFdFd6Wx6WUU_lPCzBzT7BlMqYYCwNDMNKBj07iOUSV2UPkx-hgs4l6Eof0sH3ftLDya5fdOjiq-KF1UOE64d6Vfz88vnH7lt18_3rfvfppjI1IamyNbaG0a4DY2gjkaGiM4yJxrIaYS6Bt3UDyGghQLZMctMCF_kURCxrQdOrYr_5dl4f1RzcqMOd8tqp04IPvdIhOTOAwq2lnLeAOhCMt6aRuXADlNM6z1avj5vXvLQjdCY3IejhienTnckdVO9vlSA1o5Rlg7cPBsH_WiAmdfRLyI2JijAkORFUikyRjTLBxxjAnk_ASK1Zqy1rlbNWp6zVKnrz-G5nyZ9kMyA34De03kbjYDJwxvJn4Iw0kq7fAvGdSzo5P-38MqUsfff_0kzTjY6ZmHoIfx_5j_vfA6Lf2CI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408527387</pqid></control><display><type>article</type><title>Improving the safety of human pluripotent stem cell therapies using genome-edited orthogonal safeguards</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Martin, Renata M. ; Fowler, Jonas L. ; Cromer, M. Kyle ; Lesch, Benjamin J. ; Ponce, Ezequiel ; Uchida, Nobuko ; Nishimura, Toshinobu ; Porteus, Matthew H. ; Loh, Kyle M.</creator><creatorcontrib>Martin, Renata M. ; Fowler, Jonas L. ; Cromer, M. Kyle ; Lesch, Benjamin J. ; Ponce, Ezequiel ; Uchida, Nobuko ; Nishimura, Toshinobu ; Porteus, Matthew H. ; Loh, Kyle M.</creatorcontrib><description>Despite their rapidly-expanding therapeutic potential, human pluripotent stem cell (hPSC)-derived cell therapies continue to have serious safety risks. Transplantation of hPSC-derived cell populations into preclinical models has generated teratomas (tumors arising from undifferentiated hPSCs), unwanted tissues, and other types of adverse events. Mitigating these risks is important to increase the safety of such therapies. Here we use genome editing to engineer a general platform to improve the safety of future hPSC-derived cell transplantation therapies. Specifically, we develop hPSC lines bearing two drug-inducible safeguards, which have distinct functionalities and address separate safety concerns. In vitro administration of one small molecule depletes undifferentiated hPSCs >10
6
-fold, thus preventing teratoma formation in vivo. Administration of a second small molecule kills all hPSC-derived cell-types, thus providing an option to eliminate the entire hPSC-derived cell product in vivo if adverse events arise. These orthogonal safety switches address major safety concerns with pluripotent cell-derived therapies.
Human pluripotent stem cell derived therapies can have serious safety risks. Here the authors design two drug inducible genetic safeguards to deplete undifferentiated hPSCs and hPSC-derived cell types.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-16455-7</identifier><identifier>PMID: 32483127</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>42 ; 42/100 ; 42/41 ; 631/337/4041/3196 ; 631/532/2064 ; 631/61/201/2110 ; 631/61/338/552 ; Animals ; Cell culture ; Cell Culture Techniques - methods ; Cell Differentiation - genetics ; Cell Survival - drug effects ; Cell Survival - genetics ; Cell therapy ; Depletion ; Drug development ; Gene Editing - methods ; Genome editing ; Genomes ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Humanities and Social Sciences ; Humans ; Mice, Inbred NOD ; Mice, Knockout ; Mice, SCID ; multidisciplinary ; Multidisciplinary Sciences ; Nanog Homeobox Protein - genetics ; Nanog Homeobox Protein - metabolism ; Pluripotency ; Pluripotent Stem Cells - cytology ; Pluripotent Stem Cells - drug effects ; Pluripotent Stem Cells - metabolism ; Product safety ; Safety ; Science ; Science & Technology ; Science & Technology - Other Topics ; Science (multidisciplinary) ; Small Molecule Libraries - pharmacology ; Stem Cell Transplantation - methods ; Stem cells ; Switches ; Tacrolimus - analogs & derivatives ; Tacrolimus - pharmacology ; Teratoma ; Teratoma - genetics ; Teratoma - metabolism ; Teratoma - prevention & control ; Transplantation ; Tumors</subject><ispartof>Nature communications, 2020-06, Vol.11 (1), p.2713-14, Article 2713</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>60</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000542983000005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c622t-f61fc43ddecc3980c37dc4479f460158e5b69e0ca77e8b485cbe57afe02f4bea3</citedby><cites>FETCH-LOGICAL-c622t-f61fc43ddecc3980c37dc4479f460158e5b69e0ca77e8b485cbe57afe02f4bea3</cites><orcidid>0000-0002-3850-4648 ; 0000-0002-5425-1708 ; 0000-0003-2996-4260 ; 0000-0002-8042-0149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7264334/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7264334/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2118,27933,27934,28257,41129,42198,51585,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32483127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, Renata M.</creatorcontrib><creatorcontrib>Fowler, Jonas L.</creatorcontrib><creatorcontrib>Cromer, M. Kyle</creatorcontrib><creatorcontrib>Lesch, Benjamin J.</creatorcontrib><creatorcontrib>Ponce, Ezequiel</creatorcontrib><creatorcontrib>Uchida, Nobuko</creatorcontrib><creatorcontrib>Nishimura, Toshinobu</creatorcontrib><creatorcontrib>Porteus, Matthew H.</creatorcontrib><creatorcontrib>Loh, Kyle M.</creatorcontrib><title>Improving the safety of human pluripotent stem cell therapies using genome-edited orthogonal safeguards</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>NAT COMMUN</addtitle><addtitle>Nat Commun</addtitle><description>Despite their rapidly-expanding therapeutic potential, human pluripotent stem cell (hPSC)-derived cell therapies continue to have serious safety risks. Transplantation of hPSC-derived cell populations into preclinical models has generated teratomas (tumors arising from undifferentiated hPSCs), unwanted tissues, and other types of adverse events. Mitigating these risks is important to increase the safety of such therapies. Here we use genome editing to engineer a general platform to improve the safety of future hPSC-derived cell transplantation therapies. Specifically, we develop hPSC lines bearing two drug-inducible safeguards, which have distinct functionalities and address separate safety concerns. In vitro administration of one small molecule depletes undifferentiated hPSCs >10
6
-fold, thus preventing teratoma formation in vivo. Administration of a second small molecule kills all hPSC-derived cell-types, thus providing an option to eliminate the entire hPSC-derived cell product in vivo if adverse events arise. These orthogonal safety switches address major safety concerns with pluripotent cell-derived therapies.
Human pluripotent stem cell derived therapies can have serious safety risks. Here the authors design two drug inducible genetic safeguards to deplete undifferentiated hPSCs and hPSC-derived cell types.</description><subject>42</subject><subject>42/100</subject><subject>42/41</subject><subject>631/337/4041/3196</subject><subject>631/532/2064</subject><subject>631/61/201/2110</subject><subject>631/61/338/552</subject><subject>Animals</subject><subject>Cell culture</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Survival - drug effects</subject><subject>Cell Survival - genetics</subject><subject>Cell therapy</subject><subject>Depletion</subject><subject>Drug development</subject><subject>Gene Editing - methods</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Mice, Inbred NOD</subject><subject>Mice, Knockout</subject><subject>Mice, SCID</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Nanog Homeobox Protein - genetics</subject><subject>Nanog Homeobox Protein - metabolism</subject><subject>Pluripotency</subject><subject>Pluripotent Stem Cells - cytology</subject><subject>Pluripotent Stem Cells - drug effects</subject><subject>Pluripotent Stem Cells - metabolism</subject><subject>Product safety</subject><subject>Safety</subject><subject>Science</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Small Molecule Libraries - pharmacology</subject><subject>Stem Cell Transplantation - methods</subject><subject>Stem cells</subject><subject>Switches</subject><subject>Tacrolimus - analogs & derivatives</subject><subject>Tacrolimus - pharmacology</subject><subject>Teratoma</subject><subject>Teratoma - genetics</subject><subject>Teratoma - metabolism</subject><subject>Teratoma - prevention & control</subject><subject>Transplantation</subject><subject>Tumors</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktv1DAUhSMEolXpH2CBIrFEAT9jZ4OERjxGqsQG1pbjXGc8SuJgO0X993UmZWg3CG-uZX_n2L7HRfEao_cYUfkhMsxqUSGCKlwzzivxrLgkiOEKC0KfP5pfFNcxHlEetMGSsZfFBSVMUkzEZdHvxzn4Wzf1ZTpAGbWFdFd6Wx6WUU_lPCzBzT7BlMqYYCwNDMNKBj07iOUSV2UPkx-hgs4l6Eof0sH3ftLDya5fdOjiq-KF1UOE64d6Vfz88vnH7lt18_3rfvfppjI1IamyNbaG0a4DY2gjkaGiM4yJxrIaYS6Bt3UDyGghQLZMctMCF_kURCxrQdOrYr_5dl4f1RzcqMOd8tqp04IPvdIhOTOAwq2lnLeAOhCMt6aRuXADlNM6z1avj5vXvLQjdCY3IejhienTnckdVO9vlSA1o5Rlg7cPBsH_WiAmdfRLyI2JijAkORFUikyRjTLBxxjAnk_ASK1Zqy1rlbNWp6zVKnrz-G5nyZ9kMyA34De03kbjYDJwxvJn4Iw0kq7fAvGdSzo5P-38MqUsfff_0kzTjY6ZmHoIfx_5j_vfA6Lf2CI</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Martin, Renata M.</creator><creator>Fowler, Jonas L.</creator><creator>Cromer, M. Kyle</creator><creator>Lesch, Benjamin J.</creator><creator>Ponce, Ezequiel</creator><creator>Uchida, Nobuko</creator><creator>Nishimura, Toshinobu</creator><creator>Porteus, Matthew H.</creator><creator>Loh, Kyle M.</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3850-4648</orcidid><orcidid>https://orcid.org/0000-0002-5425-1708</orcidid><orcidid>https://orcid.org/0000-0003-2996-4260</orcidid><orcidid>https://orcid.org/0000-0002-8042-0149</orcidid></search><sort><creationdate>20200601</creationdate><title>Improving the safety of human pluripotent stem cell therapies using genome-edited orthogonal safeguards</title><author>Martin, Renata M. ; Fowler, Jonas L. ; Cromer, M. Kyle ; Lesch, Benjamin J. ; Ponce, Ezequiel ; Uchida, Nobuko ; Nishimura, Toshinobu ; Porteus, Matthew H. ; Loh, Kyle M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-f61fc43ddecc3980c37dc4479f460158e5b69e0ca77e8b485cbe57afe02f4bea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>42</topic><topic>42/100</topic><topic>42/41</topic><topic>631/337/4041/3196</topic><topic>631/532/2064</topic><topic>631/61/201/2110</topic><topic>631/61/338/552</topic><topic>Animals</topic><topic>Cell culture</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Survival - drug effects</topic><topic>Cell Survival - genetics</topic><topic>Cell therapy</topic><topic>Depletion</topic><topic>Drug development</topic><topic>Gene Editing - methods</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Mice, Inbred NOD</topic><topic>Mice, Knockout</topic><topic>Mice, SCID</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Nanog Homeobox Protein - genetics</topic><topic>Nanog Homeobox Protein - metabolism</topic><topic>Pluripotency</topic><topic>Pluripotent Stem Cells - cytology</topic><topic>Pluripotent Stem Cells - drug effects</topic><topic>Pluripotent Stem Cells - metabolism</topic><topic>Product safety</topic><topic>Safety</topic><topic>Science</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Small Molecule Libraries - pharmacology</topic><topic>Stem Cell Transplantation - methods</topic><topic>Stem cells</topic><topic>Switches</topic><topic>Tacrolimus - analogs & derivatives</topic><topic>Tacrolimus - pharmacology</topic><topic>Teratoma</topic><topic>Teratoma - genetics</topic><topic>Teratoma - metabolism</topic><topic>Teratoma - prevention & control</topic><topic>Transplantation</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Renata M.</creatorcontrib><creatorcontrib>Fowler, Jonas L.</creatorcontrib><creatorcontrib>Cromer, M. Kyle</creatorcontrib><creatorcontrib>Lesch, Benjamin J.</creatorcontrib><creatorcontrib>Ponce, Ezequiel</creatorcontrib><creatorcontrib>Uchida, Nobuko</creatorcontrib><creatorcontrib>Nishimura, Toshinobu</creatorcontrib><creatorcontrib>Porteus, Matthew H.</creatorcontrib><creatorcontrib>Loh, Kyle M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Renata M.</au><au>Fowler, Jonas L.</au><au>Cromer, M. Kyle</au><au>Lesch, Benjamin J.</au><au>Ponce, Ezequiel</au><au>Uchida, Nobuko</au><au>Nishimura, Toshinobu</au><au>Porteus, Matthew H.</au><au>Loh, Kyle M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the safety of human pluripotent stem cell therapies using genome-edited orthogonal safeguards</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><stitle>NAT COMMUN</stitle><addtitle>Nat Commun</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>2713</spage><epage>14</epage><pages>2713-14</pages><artnum>2713</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Despite their rapidly-expanding therapeutic potential, human pluripotent stem cell (hPSC)-derived cell therapies continue to have serious safety risks. Transplantation of hPSC-derived cell populations into preclinical models has generated teratomas (tumors arising from undifferentiated hPSCs), unwanted tissues, and other types of adverse events. Mitigating these risks is important to increase the safety of such therapies. Here we use genome editing to engineer a general platform to improve the safety of future hPSC-derived cell transplantation therapies. Specifically, we develop hPSC lines bearing two drug-inducible safeguards, which have distinct functionalities and address separate safety concerns. In vitro administration of one small molecule depletes undifferentiated hPSCs >10
6
-fold, thus preventing teratoma formation in vivo. Administration of a second small molecule kills all hPSC-derived cell-types, thus providing an option to eliminate the entire hPSC-derived cell product in vivo if adverse events arise. These orthogonal safety switches address major safety concerns with pluripotent cell-derived therapies.
Human pluripotent stem cell derived therapies can have serious safety risks. Here the authors design two drug inducible genetic safeguards to deplete undifferentiated hPSCs and hPSC-derived cell types.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32483127</pmid><doi>10.1038/s41467-020-16455-7</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3850-4648</orcidid><orcidid>https://orcid.org/0000-0002-5425-1708</orcidid><orcidid>https://orcid.org/0000-0003-2996-4260</orcidid><orcidid>https://orcid.org/0000-0002-8042-0149</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2020-06, Vol.11 (1), p.2713-14, Article 2713 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_proquest_journals_2408527387 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | 42 42/100 42/41 631/337/4041/3196 631/532/2064 631/61/201/2110 631/61/338/552 Animals Cell culture Cell Culture Techniques - methods Cell Differentiation - genetics Cell Survival - drug effects Cell Survival - genetics Cell therapy Depletion Drug development Gene Editing - methods Genome editing Genomes Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Humanities and Social Sciences Humans Mice, Inbred NOD Mice, Knockout Mice, SCID multidisciplinary Multidisciplinary Sciences Nanog Homeobox Protein - genetics Nanog Homeobox Protein - metabolism Pluripotency Pluripotent Stem Cells - cytology Pluripotent Stem Cells - drug effects Pluripotent Stem Cells - metabolism Product safety Safety Science Science & Technology Science & Technology - Other Topics Science (multidisciplinary) Small Molecule Libraries - pharmacology Stem Cell Transplantation - methods Stem cells Switches Tacrolimus - analogs & derivatives Tacrolimus - pharmacology Teratoma Teratoma - genetics Teratoma - metabolism Teratoma - prevention & control Transplantation Tumors |
title | Improving the safety of human pluripotent stem cell therapies using genome-edited orthogonal safeguards |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T13%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20safety%20of%20human%20pluripotent%20stem%20cell%20therapies%20using%20genome-edited%20orthogonal%20safeguards&rft.jtitle=Nature%20communications&rft.au=Martin,%20Renata%20M.&rft.date=2020-06-01&rft.volume=11&rft.issue=1&rft.spage=2713&rft.epage=14&rft.pages=2713-14&rft.artnum=2713&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-16455-7&rft_dat=%3Cproquest_webof%3E2408527387%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408527387&rft_id=info:pmid/32483127&rft_doaj_id=oai_doaj_org_article_1bf355be0de745bc987455ce3536745a&rfr_iscdi=true |