Improving the safety of human pluripotent stem cell therapies using genome-edited orthogonal safeguards

Despite their rapidly-expanding therapeutic potential, human pluripotent stem cell (hPSC)-derived cell therapies continue to have serious safety risks. Transplantation of hPSC-derived cell populations into preclinical models has generated teratomas (tumors arising from undifferentiated hPSCs), unwan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-06, Vol.11 (1), p.2713-14, Article 2713
Hauptverfasser: Martin, Renata M., Fowler, Jonas L., Cromer, M. Kyle, Lesch, Benjamin J., Ponce, Ezequiel, Uchida, Nobuko, Nishimura, Toshinobu, Porteus, Matthew H., Loh, Kyle M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 1
container_start_page 2713
container_title Nature communications
container_volume 11
creator Martin, Renata M.
Fowler, Jonas L.
Cromer, M. Kyle
Lesch, Benjamin J.
Ponce, Ezequiel
Uchida, Nobuko
Nishimura, Toshinobu
Porteus, Matthew H.
Loh, Kyle M.
description Despite their rapidly-expanding therapeutic potential, human pluripotent stem cell (hPSC)-derived cell therapies continue to have serious safety risks. Transplantation of hPSC-derived cell populations into preclinical models has generated teratomas (tumors arising from undifferentiated hPSCs), unwanted tissues, and other types of adverse events. Mitigating these risks is important to increase the safety of such therapies. Here we use genome editing to engineer a general platform to improve the safety of future hPSC-derived cell transplantation therapies. Specifically, we develop hPSC lines bearing two drug-inducible safeguards, which have distinct functionalities and address separate safety concerns. In vitro administration of one small molecule depletes undifferentiated hPSCs >10 6 -fold, thus preventing teratoma formation in vivo. Administration of a second small molecule kills all hPSC-derived cell-types, thus providing an option to eliminate the entire hPSC-derived cell product in vivo if adverse events arise. These orthogonal safety switches address major safety concerns with pluripotent cell-derived therapies. Human pluripotent stem cell derived therapies can have serious safety risks. Here the authors design two drug inducible genetic safeguards to deplete undifferentiated hPSCs and hPSC-derived cell types.
doi_str_mv 10.1038/s41467-020-16455-7
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2408527387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1bf355be0de745bc987455ce3536745a</doaj_id><sourcerecordid>2408527387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-f61fc43ddecc3980c37dc4479f460158e5b69e0ca77e8b485cbe57afe02f4bea3</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEolXpH2CBIrFEAT9jZ4OERjxGqsQG1pbjXGc8SuJgO0X993UmZWg3CG-uZX_n2L7HRfEao_cYUfkhMsxqUSGCKlwzzivxrLgkiOEKC0KfP5pfFNcxHlEetMGSsZfFBSVMUkzEZdHvxzn4Wzf1ZTpAGbWFdFd6Wx6WUU_lPCzBzT7BlMqYYCwNDMNKBj07iOUSV2UPkx-hgs4l6Eof0sH3ftLDya5fdOjiq-KF1UOE64d6Vfz88vnH7lt18_3rfvfppjI1IamyNbaG0a4DY2gjkaGiM4yJxrIaYS6Bt3UDyGghQLZMctMCF_kURCxrQdOrYr_5dl4f1RzcqMOd8tqp04IPvdIhOTOAwq2lnLeAOhCMt6aRuXADlNM6z1avj5vXvLQjdCY3IejhienTnckdVO9vlSA1o5Rlg7cPBsH_WiAmdfRLyI2JijAkORFUikyRjTLBxxjAnk_ASK1Zqy1rlbNWp6zVKnrz-G5nyZ9kMyA34De03kbjYDJwxvJn4Iw0kq7fAvGdSzo5P-38MqUsfff_0kzTjY6ZmHoIfx_5j_vfA6Lf2CI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408527387</pqid></control><display><type>article</type><title>Improving the safety of human pluripotent stem cell therapies using genome-edited orthogonal safeguards</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Martin, Renata M. ; Fowler, Jonas L. ; Cromer, M. Kyle ; Lesch, Benjamin J. ; Ponce, Ezequiel ; Uchida, Nobuko ; Nishimura, Toshinobu ; Porteus, Matthew H. ; Loh, Kyle M.</creator><creatorcontrib>Martin, Renata M. ; Fowler, Jonas L. ; Cromer, M. Kyle ; Lesch, Benjamin J. ; Ponce, Ezequiel ; Uchida, Nobuko ; Nishimura, Toshinobu ; Porteus, Matthew H. ; Loh, Kyle M.</creatorcontrib><description>Despite their rapidly-expanding therapeutic potential, human pluripotent stem cell (hPSC)-derived cell therapies continue to have serious safety risks. Transplantation of hPSC-derived cell populations into preclinical models has generated teratomas (tumors arising from undifferentiated hPSCs), unwanted tissues, and other types of adverse events. Mitigating these risks is important to increase the safety of such therapies. Here we use genome editing to engineer a general platform to improve the safety of future hPSC-derived cell transplantation therapies. Specifically, we develop hPSC lines bearing two drug-inducible safeguards, which have distinct functionalities and address separate safety concerns. In vitro administration of one small molecule depletes undifferentiated hPSCs &gt;10 6 -fold, thus preventing teratoma formation in vivo. Administration of a second small molecule kills all hPSC-derived cell-types, thus providing an option to eliminate the entire hPSC-derived cell product in vivo if adverse events arise. These orthogonal safety switches address major safety concerns with pluripotent cell-derived therapies. Human pluripotent stem cell derived therapies can have serious safety risks. Here the authors design two drug inducible genetic safeguards to deplete undifferentiated hPSCs and hPSC-derived cell types.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-16455-7</identifier><identifier>PMID: 32483127</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>42 ; 42/100 ; 42/41 ; 631/337/4041/3196 ; 631/532/2064 ; 631/61/201/2110 ; 631/61/338/552 ; Animals ; Cell culture ; Cell Culture Techniques - methods ; Cell Differentiation - genetics ; Cell Survival - drug effects ; Cell Survival - genetics ; Cell therapy ; Depletion ; Drug development ; Gene Editing - methods ; Genome editing ; Genomes ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Humanities and Social Sciences ; Humans ; Mice, Inbred NOD ; Mice, Knockout ; Mice, SCID ; multidisciplinary ; Multidisciplinary Sciences ; Nanog Homeobox Protein - genetics ; Nanog Homeobox Protein - metabolism ; Pluripotency ; Pluripotent Stem Cells - cytology ; Pluripotent Stem Cells - drug effects ; Pluripotent Stem Cells - metabolism ; Product safety ; Safety ; Science ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Science (multidisciplinary) ; Small Molecule Libraries - pharmacology ; Stem Cell Transplantation - methods ; Stem cells ; Switches ; Tacrolimus - analogs &amp; derivatives ; Tacrolimus - pharmacology ; Teratoma ; Teratoma - genetics ; Teratoma - metabolism ; Teratoma - prevention &amp; control ; Transplantation ; Tumors</subject><ispartof>Nature communications, 2020-06, Vol.11 (1), p.2713-14, Article 2713</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>60</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000542983000005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c622t-f61fc43ddecc3980c37dc4479f460158e5b69e0ca77e8b485cbe57afe02f4bea3</citedby><cites>FETCH-LOGICAL-c622t-f61fc43ddecc3980c37dc4479f460158e5b69e0ca77e8b485cbe57afe02f4bea3</cites><orcidid>0000-0002-3850-4648 ; 0000-0002-5425-1708 ; 0000-0003-2996-4260 ; 0000-0002-8042-0149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7264334/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7264334/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2118,27933,27934,28257,41129,42198,51585,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32483127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, Renata M.</creatorcontrib><creatorcontrib>Fowler, Jonas L.</creatorcontrib><creatorcontrib>Cromer, M. Kyle</creatorcontrib><creatorcontrib>Lesch, Benjamin J.</creatorcontrib><creatorcontrib>Ponce, Ezequiel</creatorcontrib><creatorcontrib>Uchida, Nobuko</creatorcontrib><creatorcontrib>Nishimura, Toshinobu</creatorcontrib><creatorcontrib>Porteus, Matthew H.</creatorcontrib><creatorcontrib>Loh, Kyle M.</creatorcontrib><title>Improving the safety of human pluripotent stem cell therapies using genome-edited orthogonal safeguards</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>NAT COMMUN</addtitle><addtitle>Nat Commun</addtitle><description>Despite their rapidly-expanding therapeutic potential, human pluripotent stem cell (hPSC)-derived cell therapies continue to have serious safety risks. Transplantation of hPSC-derived cell populations into preclinical models has generated teratomas (tumors arising from undifferentiated hPSCs), unwanted tissues, and other types of adverse events. Mitigating these risks is important to increase the safety of such therapies. Here we use genome editing to engineer a general platform to improve the safety of future hPSC-derived cell transplantation therapies. Specifically, we develop hPSC lines bearing two drug-inducible safeguards, which have distinct functionalities and address separate safety concerns. In vitro administration of one small molecule depletes undifferentiated hPSCs &gt;10 6 -fold, thus preventing teratoma formation in vivo. Administration of a second small molecule kills all hPSC-derived cell-types, thus providing an option to eliminate the entire hPSC-derived cell product in vivo if adverse events arise. These orthogonal safety switches address major safety concerns with pluripotent cell-derived therapies. Human pluripotent stem cell derived therapies can have serious safety risks. Here the authors design two drug inducible genetic safeguards to deplete undifferentiated hPSCs and hPSC-derived cell types.</description><subject>42</subject><subject>42/100</subject><subject>42/41</subject><subject>631/337/4041/3196</subject><subject>631/532/2064</subject><subject>631/61/201/2110</subject><subject>631/61/338/552</subject><subject>Animals</subject><subject>Cell culture</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Survival - drug effects</subject><subject>Cell Survival - genetics</subject><subject>Cell therapy</subject><subject>Depletion</subject><subject>Drug development</subject><subject>Gene Editing - methods</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Mice, Inbred NOD</subject><subject>Mice, Knockout</subject><subject>Mice, SCID</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Nanog Homeobox Protein - genetics</subject><subject>Nanog Homeobox Protein - metabolism</subject><subject>Pluripotency</subject><subject>Pluripotent Stem Cells - cytology</subject><subject>Pluripotent Stem Cells - drug effects</subject><subject>Pluripotent Stem Cells - metabolism</subject><subject>Product safety</subject><subject>Safety</subject><subject>Science</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Small Molecule Libraries - pharmacology</subject><subject>Stem Cell Transplantation - methods</subject><subject>Stem cells</subject><subject>Switches</subject><subject>Tacrolimus - analogs &amp; derivatives</subject><subject>Tacrolimus - pharmacology</subject><subject>Teratoma</subject><subject>Teratoma - genetics</subject><subject>Teratoma - metabolism</subject><subject>Teratoma - prevention &amp; control</subject><subject>Transplantation</subject><subject>Tumors</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktv1DAUhSMEolXpH2CBIrFEAT9jZ4OERjxGqsQG1pbjXGc8SuJgO0X993UmZWg3CG-uZX_n2L7HRfEao_cYUfkhMsxqUSGCKlwzzivxrLgkiOEKC0KfP5pfFNcxHlEetMGSsZfFBSVMUkzEZdHvxzn4Wzf1ZTpAGbWFdFd6Wx6WUU_lPCzBzT7BlMqYYCwNDMNKBj07iOUSV2UPkx-hgs4l6Eof0sH3ftLDya5fdOjiq-KF1UOE64d6Vfz88vnH7lt18_3rfvfppjI1IamyNbaG0a4DY2gjkaGiM4yJxrIaYS6Bt3UDyGghQLZMctMCF_kURCxrQdOrYr_5dl4f1RzcqMOd8tqp04IPvdIhOTOAwq2lnLeAOhCMt6aRuXADlNM6z1avj5vXvLQjdCY3IejhienTnckdVO9vlSA1o5Rlg7cPBsH_WiAmdfRLyI2JijAkORFUikyRjTLBxxjAnk_ASK1Zqy1rlbNWp6zVKnrz-G5nyZ9kMyA34De03kbjYDJwxvJn4Iw0kq7fAvGdSzo5P-38MqUsfff_0kzTjY6ZmHoIfx_5j_vfA6Lf2CI</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Martin, Renata M.</creator><creator>Fowler, Jonas L.</creator><creator>Cromer, M. Kyle</creator><creator>Lesch, Benjamin J.</creator><creator>Ponce, Ezequiel</creator><creator>Uchida, Nobuko</creator><creator>Nishimura, Toshinobu</creator><creator>Porteus, Matthew H.</creator><creator>Loh, Kyle M.</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3850-4648</orcidid><orcidid>https://orcid.org/0000-0002-5425-1708</orcidid><orcidid>https://orcid.org/0000-0003-2996-4260</orcidid><orcidid>https://orcid.org/0000-0002-8042-0149</orcidid></search><sort><creationdate>20200601</creationdate><title>Improving the safety of human pluripotent stem cell therapies using genome-edited orthogonal safeguards</title><author>Martin, Renata M. ; Fowler, Jonas L. ; Cromer, M. Kyle ; Lesch, Benjamin J. ; Ponce, Ezequiel ; Uchida, Nobuko ; Nishimura, Toshinobu ; Porteus, Matthew H. ; Loh, Kyle M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-f61fc43ddecc3980c37dc4479f460158e5b69e0ca77e8b485cbe57afe02f4bea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>42</topic><topic>42/100</topic><topic>42/41</topic><topic>631/337/4041/3196</topic><topic>631/532/2064</topic><topic>631/61/201/2110</topic><topic>631/61/338/552</topic><topic>Animals</topic><topic>Cell culture</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Survival - drug effects</topic><topic>Cell Survival - genetics</topic><topic>Cell therapy</topic><topic>Depletion</topic><topic>Drug development</topic><topic>Gene Editing - methods</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Mice, Inbred NOD</topic><topic>Mice, Knockout</topic><topic>Mice, SCID</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Nanog Homeobox Protein - genetics</topic><topic>Nanog Homeobox Protein - metabolism</topic><topic>Pluripotency</topic><topic>Pluripotent Stem Cells - cytology</topic><topic>Pluripotent Stem Cells - drug effects</topic><topic>Pluripotent Stem Cells - metabolism</topic><topic>Product safety</topic><topic>Safety</topic><topic>Science</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Small Molecule Libraries - pharmacology</topic><topic>Stem Cell Transplantation - methods</topic><topic>Stem cells</topic><topic>Switches</topic><topic>Tacrolimus - analogs &amp; derivatives</topic><topic>Tacrolimus - pharmacology</topic><topic>Teratoma</topic><topic>Teratoma - genetics</topic><topic>Teratoma - metabolism</topic><topic>Teratoma - prevention &amp; control</topic><topic>Transplantation</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Renata M.</creatorcontrib><creatorcontrib>Fowler, Jonas L.</creatorcontrib><creatorcontrib>Cromer, M. Kyle</creatorcontrib><creatorcontrib>Lesch, Benjamin J.</creatorcontrib><creatorcontrib>Ponce, Ezequiel</creatorcontrib><creatorcontrib>Uchida, Nobuko</creatorcontrib><creatorcontrib>Nishimura, Toshinobu</creatorcontrib><creatorcontrib>Porteus, Matthew H.</creatorcontrib><creatorcontrib>Loh, Kyle M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Renata M.</au><au>Fowler, Jonas L.</au><au>Cromer, M. Kyle</au><au>Lesch, Benjamin J.</au><au>Ponce, Ezequiel</au><au>Uchida, Nobuko</au><au>Nishimura, Toshinobu</au><au>Porteus, Matthew H.</au><au>Loh, Kyle M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the safety of human pluripotent stem cell therapies using genome-edited orthogonal safeguards</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><stitle>NAT COMMUN</stitle><addtitle>Nat Commun</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>2713</spage><epage>14</epage><pages>2713-14</pages><artnum>2713</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Despite their rapidly-expanding therapeutic potential, human pluripotent stem cell (hPSC)-derived cell therapies continue to have serious safety risks. Transplantation of hPSC-derived cell populations into preclinical models has generated teratomas (tumors arising from undifferentiated hPSCs), unwanted tissues, and other types of adverse events. Mitigating these risks is important to increase the safety of such therapies. Here we use genome editing to engineer a general platform to improve the safety of future hPSC-derived cell transplantation therapies. Specifically, we develop hPSC lines bearing two drug-inducible safeguards, which have distinct functionalities and address separate safety concerns. In vitro administration of one small molecule depletes undifferentiated hPSCs &gt;10 6 -fold, thus preventing teratoma formation in vivo. Administration of a second small molecule kills all hPSC-derived cell-types, thus providing an option to eliminate the entire hPSC-derived cell product in vivo if adverse events arise. These orthogonal safety switches address major safety concerns with pluripotent cell-derived therapies. Human pluripotent stem cell derived therapies can have serious safety risks. Here the authors design two drug inducible genetic safeguards to deplete undifferentiated hPSCs and hPSC-derived cell types.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32483127</pmid><doi>10.1038/s41467-020-16455-7</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3850-4648</orcidid><orcidid>https://orcid.org/0000-0002-5425-1708</orcidid><orcidid>https://orcid.org/0000-0003-2996-4260</orcidid><orcidid>https://orcid.org/0000-0002-8042-0149</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2020-06, Vol.11 (1), p.2713-14, Article 2713
issn 2041-1723
2041-1723
language eng
recordid cdi_proquest_journals_2408527387
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects 42
42/100
42/41
631/337/4041/3196
631/532/2064
631/61/201/2110
631/61/338/552
Animals
Cell culture
Cell Culture Techniques - methods
Cell Differentiation - genetics
Cell Survival - drug effects
Cell Survival - genetics
Cell therapy
Depletion
Drug development
Gene Editing - methods
Genome editing
Genomes
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Humanities and Social Sciences
Humans
Mice, Inbred NOD
Mice, Knockout
Mice, SCID
multidisciplinary
Multidisciplinary Sciences
Nanog Homeobox Protein - genetics
Nanog Homeobox Protein - metabolism
Pluripotency
Pluripotent Stem Cells - cytology
Pluripotent Stem Cells - drug effects
Pluripotent Stem Cells - metabolism
Product safety
Safety
Science
Science & Technology
Science & Technology - Other Topics
Science (multidisciplinary)
Small Molecule Libraries - pharmacology
Stem Cell Transplantation - methods
Stem cells
Switches
Tacrolimus - analogs & derivatives
Tacrolimus - pharmacology
Teratoma
Teratoma - genetics
Teratoma - metabolism
Teratoma - prevention & control
Transplantation
Tumors
title Improving the safety of human pluripotent stem cell therapies using genome-edited orthogonal safeguards
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T13%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20safety%20of%20human%20pluripotent%20stem%20cell%20therapies%20using%20genome-edited%20orthogonal%20safeguards&rft.jtitle=Nature%20communications&rft.au=Martin,%20Renata%20M.&rft.date=2020-06-01&rft.volume=11&rft.issue=1&rft.spage=2713&rft.epage=14&rft.pages=2713-14&rft.artnum=2713&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-16455-7&rft_dat=%3Cproquest_webof%3E2408527387%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408527387&rft_id=info:pmid/32483127&rft_doaj_id=oai_doaj_org_article_1bf355be0de745bc987455ce3536745a&rfr_iscdi=true