Thermodynamic properties, crystal structure and phase relations of pushcharovskite [Cu(AsO3OH) (H2O) center dot 0.5H(2)O], geminite [Cu(AsO3OH)(H2O)] and liroconite [Cu2Al(AsO4)(OH)(4) center dot 4H(2)O]
The phases pushcharovskite, geminite and liroconite were synthesized or acquired and characterized by powder X-ray diffraction, infrared spectroscopy, electron microprobe analysis, thermogravimetric analysis and optical emission spectrometry, as needed. Their thermodynamic properties were determined...
Gespeichert in:
Veröffentlicht in: | European journal of mineralogy (Stuttgart) 2020-05, Vol.32 (3), p.285-304 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 304 |
---|---|
container_issue | 3 |
container_start_page | 285 |
container_title | European journal of mineralogy (Stuttgart) |
container_volume | 32 |
creator | Plumhoff, Alexandra M. Plasil, Jakub Dachs, Edgar Benisek, Artur Sejkora, Jiri Stevko, Martin Rumsey, Mike S. Majzlan, Juraj |
description | The phases pushcharovskite, geminite and liroconite were synthesized or acquired and characterized by powder X-ray diffraction, infrared spectroscopy, electron microprobe analysis, thermogravimetric analysis and optical emission spectrometry, as needed. Their thermodynamic properties were determined by a combination of acid-solution calorimetry and relaxation calorimetry, resulting in Gibbs free energies of formation (Delta(f)G degrees, all values in kilojoules per mole) of -1036.4 +/- 3.8 (pushcharovskite, [Cu(AsO3OH) (H2O) center dot 0.5H(2)O] and -926.7 +/- 3.2 (geminite, [Cu(AsO3OH) (H2O). For the natural liroconite (Cu2Al](AsO4)(0.83)(PO4)(0.17)] (OH)(4) center dot 4H(2)O), Delta(f)G degrees = -2996.3 +/- 9.2 kJ mol(-1). The estimated Delta(f)G degrees for the endmember Cu2Al(AsO4)(OH)(4) center dot 4H(2)O is -2931.6 kJ mol(-1). The crystal structure of liroconite was refined (R-1 = 1.96 % for 962 reflections with I > 3 sigma (I)) by single-crystal X-ray diffraction and the positions of H atoms, not known previously, were determined. Liroconite is a rare mineral, except for several localities, notably Wheal Gorland in England. Thermodynamic modelling showed that liroconite will be preferred over olivenite if the Al(III) concentration in the fluid reaches levels needed for saturation with X-ray amorphous Al(OH)(3). We assume that such fluids are responsible for the liroconite formation during contemporaneous oxidation of primary Cu-As ores and pervasive kaolinization of the host peraluminous granites. pH had to be kept in mildly acidic (5-6), and the activities of dissolved silica were too low to form dioptase. The main stage with abundant liroconite formation was preceded by an acidic episode with scorodite and pharmacosiderite and followed by a late neutral to mildly basic episode with copper carbonates. Geminite and pushcharovskite, on the other hand, are minerals typical for very acidic solutions. At the studied site in Jachymov (Czech Republic), extremely acidic water precipitates arsenolite; sulfate is removed by formation of gypsum. Geminite associates with other acidic minerals, such as slavkovite, yvonite and minerals of the lindackerite group. Pushcharovskite is metastable with respect to geminite and probably converts quickly to geminite under field conditions. |
doi_str_mv | 10.5194/ejm-32-285-2020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2408495257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_63e1b8b30a174f77b1c1f8d8a137a19a</doaj_id><sourcerecordid>2408495257</sourcerecordid><originalsourceid>FETCH-LOGICAL-a288t-26663d49ac5c6dfa7a9145a187cfb4910aa90c222f18c8733f6454549f28d4583</originalsourceid><addsrcrecordid>eNqNkUGP0zAQhSMEEmXhzNUSl1ZsWI_tJM6xqmC70kq5LCe0siaOvU1J42I7i_ob-VO47bISnJAPY42-92Y0L8veA_1UQC2uzHaXc5YzWeSMMvoim0EJVS4owMtsRmte5MAYvM7ehLClFLgQdJb9utsYv3PdYcRdr8neu73xsTfhkmh_CBEHEqKfdJy8ITh2ZL_BYIg3A8bejYE4S_ZT2OgNevcYvvfRkG-rab4MDW_WCzJfs2ZBtBmj8aRzkaRt13O2aO4vyYPZ9eM_ghN_f5o09N5p9wdgy-HIiMX8SIm_PMXZ8W32yuIQzLunepF9_fL5brXOb5vrm9XyNkcmZcxZWZa8EzXqQpedxQprEAWCrLRtRQ0UsaaaMWZBallxbktRpFdbJjtRSH6R3Zx9O4dbtff9Dv1BOezVqeH8g8J0Qz0YVXIDrWw5RaiEraoWNFjZSQReIdSYvD6cvdLlf0wmRLV1kx_T-ooJKkVdsKJK1NWZ0t6F4I19ngpUHdNXKX3FmUrpq2P6SSHPip-mdTbo3ozaPKsopQUHKRlPPwqrPp7SXLlpjEn68f-l_Df_Yb9U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408495257</pqid></control><display><type>article</type><title>Thermodynamic properties, crystal structure and phase relations of pushcharovskite [Cu(AsO3OH) (H2O) center dot 0.5H(2)O], geminite [Cu(AsO3OH)(H2O)] and liroconite [Cu2Al(AsO4)(OH)(4) center dot 4H(2)O]</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Plumhoff, Alexandra M. ; Plasil, Jakub ; Dachs, Edgar ; Benisek, Artur ; Sejkora, Jiri ; Stevko, Martin ; Rumsey, Mike S. ; Majzlan, Juraj</creator><creatorcontrib>Plumhoff, Alexandra M. ; Plasil, Jakub ; Dachs, Edgar ; Benisek, Artur ; Sejkora, Jiri ; Stevko, Martin ; Rumsey, Mike S. ; Majzlan, Juraj</creatorcontrib><description>The phases pushcharovskite, geminite and liroconite were synthesized or acquired and characterized by powder X-ray diffraction, infrared spectroscopy, electron microprobe analysis, thermogravimetric analysis and optical emission spectrometry, as needed. Their thermodynamic properties were determined by a combination of acid-solution calorimetry and relaxation calorimetry, resulting in Gibbs free energies of formation (Delta(f)G degrees, all values in kilojoules per mole) of -1036.4 +/- 3.8 (pushcharovskite, [Cu(AsO3OH) (H2O) center dot 0.5H(2)O] and -926.7 +/- 3.2 (geminite, [Cu(AsO3OH) (H2O). For the natural liroconite (Cu2Al](AsO4)(0.83)(PO4)(0.17)] (OH)(4) center dot 4H(2)O), Delta(f)G degrees = -2996.3 +/- 9.2 kJ mol(-1). The estimated Delta(f)G degrees for the endmember Cu2Al(AsO4)(OH)(4) center dot 4H(2)O is -2931.6 kJ mol(-1). The crystal structure of liroconite was refined (R-1 = 1.96 % for 962 reflections with I > 3 sigma (I)) by single-crystal X-ray diffraction and the positions of H atoms, not known previously, were determined. Liroconite is a rare mineral, except for several localities, notably Wheal Gorland in England. Thermodynamic modelling showed that liroconite will be preferred over olivenite if the Al(III) concentration in the fluid reaches levels needed for saturation with X-ray amorphous Al(OH)(3). We assume that such fluids are responsible for the liroconite formation during contemporaneous oxidation of primary Cu-As ores and pervasive kaolinization of the host peraluminous granites. pH had to be kept in mildly acidic (5-6), and the activities of dissolved silica were too low to form dioptase. The main stage with abundant liroconite formation was preceded by an acidic episode with scorodite and pharmacosiderite and followed by a late neutral to mildly basic episode with copper carbonates. Geminite and pushcharovskite, on the other hand, are minerals typical for very acidic solutions. At the studied site in Jachymov (Czech Republic), extremely acidic water precipitates arsenolite; sulfate is removed by formation of gypsum. Geminite associates with other acidic minerals, such as slavkovite, yvonite and minerals of the lindackerite group. Pushcharovskite is metastable with respect to geminite and probably converts quickly to geminite under field conditions.</description><identifier>ISSN: 0935-1221</identifier><identifier>ISSN: 1617-4011</identifier><identifier>EISSN: 1617-4011</identifier><identifier>DOI: 10.5194/ejm-32-285-2020</identifier><language>eng</language><publisher>GOTTINGEN: Copernicus Gesellschaft Mbh</publisher><subject>Acidic water ; Arsenic ; Calorimetry ; Carbonates ; Computational fluid dynamics ; Copper ; Crystal structure ; Electron probe microanalysis ; Electron probes ; Emission analysis ; Gypsum ; Heat measurement ; Infrared analysis ; Infrared spectroscopy ; Laboratories ; Mineralization ; Mineralogy ; Minerals ; Optical emission spectroscopy ; Optical properties ; Oxidation ; Physical Sciences ; Precipitates ; Science & Technology ; Silica ; Silicon dioxide ; Single crystals ; Software ; Spectrometry ; Spectrum analysis ; Thermodynamic models ; Thermodynamic properties ; Thermogravimetric analysis ; X ray powder diffraction ; X-ray diffraction</subject><ispartof>European journal of mineralogy (Stuttgart), 2020-05, Vol.32 (3), p.285-304</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000531882300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a288t-26663d49ac5c6dfa7a9145a187cfb4910aa90c222f18c8733f6454549f28d4583</citedby><cites>FETCH-LOGICAL-a288t-26663d49ac5c6dfa7a9145a187cfb4910aa90c222f18c8733f6454549f28d4583</cites><orcidid>0000-0002-3489-9128 ; 0000-0002-1570-5850</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,2104,2116,27931,27932,28255</link.rule.ids></links><search><creatorcontrib>Plumhoff, Alexandra M.</creatorcontrib><creatorcontrib>Plasil, Jakub</creatorcontrib><creatorcontrib>Dachs, Edgar</creatorcontrib><creatorcontrib>Benisek, Artur</creatorcontrib><creatorcontrib>Sejkora, Jiri</creatorcontrib><creatorcontrib>Stevko, Martin</creatorcontrib><creatorcontrib>Rumsey, Mike S.</creatorcontrib><creatorcontrib>Majzlan, Juraj</creatorcontrib><title>Thermodynamic properties, crystal structure and phase relations of pushcharovskite [Cu(AsO3OH) (H2O) center dot 0.5H(2)O], geminite [Cu(AsO3OH)(H2O)] and liroconite [Cu2Al(AsO4)(OH)(4) center dot 4H(2)O]</title><title>European journal of mineralogy (Stuttgart)</title><addtitle>EUR J MINERAL</addtitle><description>The phases pushcharovskite, geminite and liroconite were synthesized or acquired and characterized by powder X-ray diffraction, infrared spectroscopy, electron microprobe analysis, thermogravimetric analysis and optical emission spectrometry, as needed. Their thermodynamic properties were determined by a combination of acid-solution calorimetry and relaxation calorimetry, resulting in Gibbs free energies of formation (Delta(f)G degrees, all values in kilojoules per mole) of -1036.4 +/- 3.8 (pushcharovskite, [Cu(AsO3OH) (H2O) center dot 0.5H(2)O] and -926.7 +/- 3.2 (geminite, [Cu(AsO3OH) (H2O). For the natural liroconite (Cu2Al](AsO4)(0.83)(PO4)(0.17)] (OH)(4) center dot 4H(2)O), Delta(f)G degrees = -2996.3 +/- 9.2 kJ mol(-1). The estimated Delta(f)G degrees for the endmember Cu2Al(AsO4)(OH)(4) center dot 4H(2)O is -2931.6 kJ mol(-1). The crystal structure of liroconite was refined (R-1 = 1.96 % for 962 reflections with I > 3 sigma (I)) by single-crystal X-ray diffraction and the positions of H atoms, not known previously, were determined. Liroconite is a rare mineral, except for several localities, notably Wheal Gorland in England. Thermodynamic modelling showed that liroconite will be preferred over olivenite if the Al(III) concentration in the fluid reaches levels needed for saturation with X-ray amorphous Al(OH)(3). We assume that such fluids are responsible for the liroconite formation during contemporaneous oxidation of primary Cu-As ores and pervasive kaolinization of the host peraluminous granites. pH had to be kept in mildly acidic (5-6), and the activities of dissolved silica were too low to form dioptase. The main stage with abundant liroconite formation was preceded by an acidic episode with scorodite and pharmacosiderite and followed by a late neutral to mildly basic episode with copper carbonates. Geminite and pushcharovskite, on the other hand, are minerals typical for very acidic solutions. At the studied site in Jachymov (Czech Republic), extremely acidic water precipitates arsenolite; sulfate is removed by formation of gypsum. Geminite associates with other acidic minerals, such as slavkovite, yvonite and minerals of the lindackerite group. Pushcharovskite is metastable with respect to geminite and probably converts quickly to geminite under field conditions.</description><subject>Acidic water</subject><subject>Arsenic</subject><subject>Calorimetry</subject><subject>Carbonates</subject><subject>Computational fluid dynamics</subject><subject>Copper</subject><subject>Crystal structure</subject><subject>Electron probe microanalysis</subject><subject>Electron probes</subject><subject>Emission analysis</subject><subject>Gypsum</subject><subject>Heat measurement</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Laboratories</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Optical emission spectroscopy</subject><subject>Optical properties</subject><subject>Oxidation</subject><subject>Physical Sciences</subject><subject>Precipitates</subject><subject>Science & Technology</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Single crystals</subject><subject>Software</subject><subject>Spectrometry</subject><subject>Spectrum analysis</subject><subject>Thermodynamic models</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><subject>X ray powder diffraction</subject><subject>X-ray diffraction</subject><issn>0935-1221</issn><issn>1617-4011</issn><issn>1617-4011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkUGP0zAQhSMEEmXhzNUSl1ZsWI_tJM6xqmC70kq5LCe0siaOvU1J42I7i_ob-VO47bISnJAPY42-92Y0L8veA_1UQC2uzHaXc5YzWeSMMvoim0EJVS4owMtsRmte5MAYvM7ehLClFLgQdJb9utsYv3PdYcRdr8neu73xsTfhkmh_CBEHEqKfdJy8ITh2ZL_BYIg3A8bejYE4S_ZT2OgNevcYvvfRkG-rab4MDW_WCzJfs2ZBtBmj8aRzkaRt13O2aO4vyYPZ9eM_ghN_f5o09N5p9wdgy-HIiMX8SIm_PMXZ8W32yuIQzLunepF9_fL5brXOb5vrm9XyNkcmZcxZWZa8EzXqQpedxQprEAWCrLRtRQ0UsaaaMWZBallxbktRpFdbJjtRSH6R3Zx9O4dbtff9Dv1BOezVqeH8g8J0Qz0YVXIDrWw5RaiEraoWNFjZSQReIdSYvD6cvdLlf0wmRLV1kx_T-ooJKkVdsKJK1NWZ0t6F4I19ngpUHdNXKX3FmUrpq2P6SSHPip-mdTbo3ozaPKsopQUHKRlPPwqrPp7SXLlpjEn68f-l_Df_Yb9U</recordid><startdate>20200511</startdate><enddate>20200511</enddate><creator>Plumhoff, Alexandra M.</creator><creator>Plasil, Jakub</creator><creator>Dachs, Edgar</creator><creator>Benisek, Artur</creator><creator>Sejkora, Jiri</creator><creator>Stevko, Martin</creator><creator>Rumsey, Mike S.</creator><creator>Majzlan, Juraj</creator><general>Copernicus Gesellschaft Mbh</general><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3489-9128</orcidid><orcidid>https://orcid.org/0000-0002-1570-5850</orcidid></search><sort><creationdate>20200511</creationdate><title>Thermodynamic properties, crystal structure and phase relations of pushcharovskite [Cu(AsO3OH) (H2O) center dot 0.5H(2)O], geminite [Cu(AsO3OH)(H2O)] and liroconite [Cu2Al(AsO4)(OH)(4) center dot 4H(2)O]</title><author>Plumhoff, Alexandra M. ; Plasil, Jakub ; Dachs, Edgar ; Benisek, Artur ; Sejkora, Jiri ; Stevko, Martin ; Rumsey, Mike S. ; Majzlan, Juraj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a288t-26663d49ac5c6dfa7a9145a187cfb4910aa90c222f18c8733f6454549f28d4583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acidic water</topic><topic>Arsenic</topic><topic>Calorimetry</topic><topic>Carbonates</topic><topic>Computational fluid dynamics</topic><topic>Copper</topic><topic>Crystal structure</topic><topic>Electron probe microanalysis</topic><topic>Electron probes</topic><topic>Emission analysis</topic><topic>Gypsum</topic><topic>Heat measurement</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Laboratories</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Optical emission spectroscopy</topic><topic>Optical properties</topic><topic>Oxidation</topic><topic>Physical Sciences</topic><topic>Precipitates</topic><topic>Science & Technology</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Single crystals</topic><topic>Software</topic><topic>Spectrometry</topic><topic>Spectrum analysis</topic><topic>Thermodynamic models</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><topic>X ray powder diffraction</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plumhoff, Alexandra M.</creatorcontrib><creatorcontrib>Plasil, Jakub</creatorcontrib><creatorcontrib>Dachs, Edgar</creatorcontrib><creatorcontrib>Benisek, Artur</creatorcontrib><creatorcontrib>Sejkora, Jiri</creatorcontrib><creatorcontrib>Stevko, Martin</creatorcontrib><creatorcontrib>Rumsey, Mike S.</creatorcontrib><creatorcontrib>Majzlan, Juraj</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>European journal of mineralogy (Stuttgart)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plumhoff, Alexandra M.</au><au>Plasil, Jakub</au><au>Dachs, Edgar</au><au>Benisek, Artur</au><au>Sejkora, Jiri</au><au>Stevko, Martin</au><au>Rumsey, Mike S.</au><au>Majzlan, Juraj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic properties, crystal structure and phase relations of pushcharovskite [Cu(AsO3OH) (H2O) center dot 0.5H(2)O], geminite [Cu(AsO3OH)(H2O)] and liroconite [Cu2Al(AsO4)(OH)(4) center dot 4H(2)O]</atitle><jtitle>European journal of mineralogy (Stuttgart)</jtitle><stitle>EUR J MINERAL</stitle><date>2020-05-11</date><risdate>2020</risdate><volume>32</volume><issue>3</issue><spage>285</spage><epage>304</epage><pages>285-304</pages><issn>0935-1221</issn><issn>1617-4011</issn><eissn>1617-4011</eissn><abstract>The phases pushcharovskite, geminite and liroconite were synthesized or acquired and characterized by powder X-ray diffraction, infrared spectroscopy, electron microprobe analysis, thermogravimetric analysis and optical emission spectrometry, as needed. Their thermodynamic properties were determined by a combination of acid-solution calorimetry and relaxation calorimetry, resulting in Gibbs free energies of formation (Delta(f)G degrees, all values in kilojoules per mole) of -1036.4 +/- 3.8 (pushcharovskite, [Cu(AsO3OH) (H2O) center dot 0.5H(2)O] and -926.7 +/- 3.2 (geminite, [Cu(AsO3OH) (H2O). For the natural liroconite (Cu2Al](AsO4)(0.83)(PO4)(0.17)] (OH)(4) center dot 4H(2)O), Delta(f)G degrees = -2996.3 +/- 9.2 kJ mol(-1). The estimated Delta(f)G degrees for the endmember Cu2Al(AsO4)(OH)(4) center dot 4H(2)O is -2931.6 kJ mol(-1). The crystal structure of liroconite was refined (R-1 = 1.96 % for 962 reflections with I > 3 sigma (I)) by single-crystal X-ray diffraction and the positions of H atoms, not known previously, were determined. Liroconite is a rare mineral, except for several localities, notably Wheal Gorland in England. Thermodynamic modelling showed that liroconite will be preferred over olivenite if the Al(III) concentration in the fluid reaches levels needed for saturation with X-ray amorphous Al(OH)(3). We assume that such fluids are responsible for the liroconite formation during contemporaneous oxidation of primary Cu-As ores and pervasive kaolinization of the host peraluminous granites. pH had to be kept in mildly acidic (5-6), and the activities of dissolved silica were too low to form dioptase. The main stage with abundant liroconite formation was preceded by an acidic episode with scorodite and pharmacosiderite and followed by a late neutral to mildly basic episode with copper carbonates. Geminite and pushcharovskite, on the other hand, are minerals typical for very acidic solutions. At the studied site in Jachymov (Czech Republic), extremely acidic water precipitates arsenolite; sulfate is removed by formation of gypsum. Geminite associates with other acidic minerals, such as slavkovite, yvonite and minerals of the lindackerite group. Pushcharovskite is metastable with respect to geminite and probably converts quickly to geminite under field conditions.</abstract><cop>GOTTINGEN</cop><pub>Copernicus Gesellschaft Mbh</pub><doi>10.5194/ejm-32-285-2020</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3489-9128</orcidid><orcidid>https://orcid.org/0000-0002-1570-5850</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-1221 |
ispartof | European journal of mineralogy (Stuttgart), 2020-05, Vol.32 (3), p.285-304 |
issn | 0935-1221 1617-4011 1617-4011 |
language | eng |
recordid | cdi_proquest_journals_2408495257 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Acidic water Arsenic Calorimetry Carbonates Computational fluid dynamics Copper Crystal structure Electron probe microanalysis Electron probes Emission analysis Gypsum Heat measurement Infrared analysis Infrared spectroscopy Laboratories Mineralization Mineralogy Minerals Optical emission spectroscopy Optical properties Oxidation Physical Sciences Precipitates Science & Technology Silica Silicon dioxide Single crystals Software Spectrometry Spectrum analysis Thermodynamic models Thermodynamic properties Thermogravimetric analysis X ray powder diffraction X-ray diffraction |
title | Thermodynamic properties, crystal structure and phase relations of pushcharovskite [Cu(AsO3OH) (H2O) center dot 0.5H(2)O], geminite [Cu(AsO3OH)(H2O)] and liroconite [Cu2Al(AsO4)(OH)(4) center dot 4H(2)O] |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T21%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20properties,%20crystal%20structure%20and%20phase%20relations%20of%20pushcharovskite%20%5BCu(AsO3OH)%20(H2O)%20center%20dot%200.5H(2)O%5D,%20geminite%20%5BCu(AsO3OH)(H2O)%5D%20and%20liroconite%20%5BCu2Al(AsO4)(OH)(4)%20center%20dot%204H(2)O%5D&rft.jtitle=European%20journal%20of%20mineralogy%20(Stuttgart)&rft.au=Plumhoff,%20Alexandra%20M.&rft.date=2020-05-11&rft.volume=32&rft.issue=3&rft.spage=285&rft.epage=304&rft.pages=285-304&rft.issn=0935-1221&rft.eissn=1617-4011&rft_id=info:doi/10.5194/ejm-32-285-2020&rft_dat=%3Cproquest_cross%3E2408495257%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408495257&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_63e1b8b30a174f77b1c1f8d8a137a19a&rfr_iscdi=true |