Thermodynamic properties, crystal structure and phase relations of pushcharovskite [Cu(AsO3OH) (H2O) center dot 0.5H(2)O], geminite [Cu(AsO3OH)(H2O)] and liroconite [Cu2Al(AsO4)(OH)(4) center dot 4H(2)O]

The phases pushcharovskite, geminite and liroconite were synthesized or acquired and characterized by powder X-ray diffraction, infrared spectroscopy, electron microprobe analysis, thermogravimetric analysis and optical emission spectrometry, as needed. Their thermodynamic properties were determined...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of mineralogy (Stuttgart) 2020-05, Vol.32 (3), p.285-304
Hauptverfasser: Plumhoff, Alexandra M., Plasil, Jakub, Dachs, Edgar, Benisek, Artur, Sejkora, Jiri, Stevko, Martin, Rumsey, Mike S., Majzlan, Juraj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 304
container_issue 3
container_start_page 285
container_title European journal of mineralogy (Stuttgart)
container_volume 32
creator Plumhoff, Alexandra M.
Plasil, Jakub
Dachs, Edgar
Benisek, Artur
Sejkora, Jiri
Stevko, Martin
Rumsey, Mike S.
Majzlan, Juraj
description The phases pushcharovskite, geminite and liroconite were synthesized or acquired and characterized by powder X-ray diffraction, infrared spectroscopy, electron microprobe analysis, thermogravimetric analysis and optical emission spectrometry, as needed. Their thermodynamic properties were determined by a combination of acid-solution calorimetry and relaxation calorimetry, resulting in Gibbs free energies of formation (Delta(f)G degrees, all values in kilojoules per mole) of -1036.4 +/- 3.8 (pushcharovskite, [Cu(AsO3OH) (H2O) center dot 0.5H(2)O] and -926.7 +/- 3.2 (geminite, [Cu(AsO3OH) (H2O). For the natural liroconite (Cu2Al](AsO4)(0.83)(PO4)(0.17)] (OH)(4) center dot 4H(2)O), Delta(f)G degrees = -2996.3 +/- 9.2 kJ mol(-1). The estimated Delta(f)G degrees for the endmember Cu2Al(AsO4)(OH)(4) center dot 4H(2)O is -2931.6 kJ mol(-1). The crystal structure of liroconite was refined (R-1 = 1.96 % for 962 reflections with I > 3 sigma (I)) by single-crystal X-ray diffraction and the positions of H atoms, not known previously, were determined. Liroconite is a rare mineral, except for several localities, notably Wheal Gorland in England. Thermodynamic modelling showed that liroconite will be preferred over olivenite if the Al(III) concentration in the fluid reaches levels needed for saturation with X-ray amorphous Al(OH)(3). We assume that such fluids are responsible for the liroconite formation during contemporaneous oxidation of primary Cu-As ores and pervasive kaolinization of the host peraluminous granites. pH had to be kept in mildly acidic (5-6), and the activities of dissolved silica were too low to form dioptase. The main stage with abundant liroconite formation was preceded by an acidic episode with scorodite and pharmacosiderite and followed by a late neutral to mildly basic episode with copper carbonates. Geminite and pushcharovskite, on the other hand, are minerals typical for very acidic solutions. At the studied site in Jachymov (Czech Republic), extremely acidic water precipitates arsenolite; sulfate is removed by formation of gypsum. Geminite associates with other acidic minerals, such as slavkovite, yvonite and minerals of the lindackerite group. Pushcharovskite is metastable with respect to geminite and probably converts quickly to geminite under field conditions.
doi_str_mv 10.5194/ejm-32-285-2020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2408495257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_63e1b8b30a174f77b1c1f8d8a137a19a</doaj_id><sourcerecordid>2408495257</sourcerecordid><originalsourceid>FETCH-LOGICAL-a288t-26663d49ac5c6dfa7a9145a187cfb4910aa90c222f18c8733f6454549f28d4583</originalsourceid><addsrcrecordid>eNqNkUGP0zAQhSMEEmXhzNUSl1ZsWI_tJM6xqmC70kq5LCe0siaOvU1J42I7i_ob-VO47bISnJAPY42-92Y0L8veA_1UQC2uzHaXc5YzWeSMMvoim0EJVS4owMtsRmte5MAYvM7ehLClFLgQdJb9utsYv3PdYcRdr8neu73xsTfhkmh_CBEHEqKfdJy8ITh2ZL_BYIg3A8bejYE4S_ZT2OgNevcYvvfRkG-rab4MDW_WCzJfs2ZBtBmj8aRzkaRt13O2aO4vyYPZ9eM_ghN_f5o09N5p9wdgy-HIiMX8SIm_PMXZ8W32yuIQzLunepF9_fL5brXOb5vrm9XyNkcmZcxZWZa8EzXqQpedxQprEAWCrLRtRQ0UsaaaMWZBallxbktRpFdbJjtRSH6R3Zx9O4dbtff9Dv1BOezVqeH8g8J0Qz0YVXIDrWw5RaiEraoWNFjZSQReIdSYvD6cvdLlf0wmRLV1kx_T-ooJKkVdsKJK1NWZ0t6F4I19ngpUHdNXKX3FmUrpq2P6SSHPip-mdTbo3ozaPKsopQUHKRlPPwqrPp7SXLlpjEn68f-l_Df_Yb9U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408495257</pqid></control><display><type>article</type><title>Thermodynamic properties, crystal structure and phase relations of pushcharovskite [Cu(AsO3OH) (H2O) center dot 0.5H(2)O], geminite [Cu(AsO3OH)(H2O)] and liroconite [Cu2Al(AsO4)(OH)(4) center dot 4H(2)O]</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Plumhoff, Alexandra M. ; Plasil, Jakub ; Dachs, Edgar ; Benisek, Artur ; Sejkora, Jiri ; Stevko, Martin ; Rumsey, Mike S. ; Majzlan, Juraj</creator><creatorcontrib>Plumhoff, Alexandra M. ; Plasil, Jakub ; Dachs, Edgar ; Benisek, Artur ; Sejkora, Jiri ; Stevko, Martin ; Rumsey, Mike S. ; Majzlan, Juraj</creatorcontrib><description>The phases pushcharovskite, geminite and liroconite were synthesized or acquired and characterized by powder X-ray diffraction, infrared spectroscopy, electron microprobe analysis, thermogravimetric analysis and optical emission spectrometry, as needed. Their thermodynamic properties were determined by a combination of acid-solution calorimetry and relaxation calorimetry, resulting in Gibbs free energies of formation (Delta(f)G degrees, all values in kilojoules per mole) of -1036.4 +/- 3.8 (pushcharovskite, [Cu(AsO3OH) (H2O) center dot 0.5H(2)O] and -926.7 +/- 3.2 (geminite, [Cu(AsO3OH) (H2O). For the natural liroconite (Cu2Al](AsO4)(0.83)(PO4)(0.17)] (OH)(4) center dot 4H(2)O), Delta(f)G degrees = -2996.3 +/- 9.2 kJ mol(-1). The estimated Delta(f)G degrees for the endmember Cu2Al(AsO4)(OH)(4) center dot 4H(2)O is -2931.6 kJ mol(-1). The crystal structure of liroconite was refined (R-1 = 1.96 % for 962 reflections with I &gt; 3 sigma (I)) by single-crystal X-ray diffraction and the positions of H atoms, not known previously, were determined. Liroconite is a rare mineral, except for several localities, notably Wheal Gorland in England. Thermodynamic modelling showed that liroconite will be preferred over olivenite if the Al(III) concentration in the fluid reaches levels needed for saturation with X-ray amorphous Al(OH)(3). We assume that such fluids are responsible for the liroconite formation during contemporaneous oxidation of primary Cu-As ores and pervasive kaolinization of the host peraluminous granites. pH had to be kept in mildly acidic (5-6), and the activities of dissolved silica were too low to form dioptase. The main stage with abundant liroconite formation was preceded by an acidic episode with scorodite and pharmacosiderite and followed by a late neutral to mildly basic episode with copper carbonates. Geminite and pushcharovskite, on the other hand, are minerals typical for very acidic solutions. At the studied site in Jachymov (Czech Republic), extremely acidic water precipitates arsenolite; sulfate is removed by formation of gypsum. Geminite associates with other acidic minerals, such as slavkovite, yvonite and minerals of the lindackerite group. Pushcharovskite is metastable with respect to geminite and probably converts quickly to geminite under field conditions.</description><identifier>ISSN: 0935-1221</identifier><identifier>ISSN: 1617-4011</identifier><identifier>EISSN: 1617-4011</identifier><identifier>DOI: 10.5194/ejm-32-285-2020</identifier><language>eng</language><publisher>GOTTINGEN: Copernicus Gesellschaft Mbh</publisher><subject>Acidic water ; Arsenic ; Calorimetry ; Carbonates ; Computational fluid dynamics ; Copper ; Crystal structure ; Electron probe microanalysis ; Electron probes ; Emission analysis ; Gypsum ; Heat measurement ; Infrared analysis ; Infrared spectroscopy ; Laboratories ; Mineralization ; Mineralogy ; Minerals ; Optical emission spectroscopy ; Optical properties ; Oxidation ; Physical Sciences ; Precipitates ; Science &amp; Technology ; Silica ; Silicon dioxide ; Single crystals ; Software ; Spectrometry ; Spectrum analysis ; Thermodynamic models ; Thermodynamic properties ; Thermogravimetric analysis ; X ray powder diffraction ; X-ray diffraction</subject><ispartof>European journal of mineralogy (Stuttgart), 2020-05, Vol.32 (3), p.285-304</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000531882300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a288t-26663d49ac5c6dfa7a9145a187cfb4910aa90c222f18c8733f6454549f28d4583</citedby><cites>FETCH-LOGICAL-a288t-26663d49ac5c6dfa7a9145a187cfb4910aa90c222f18c8733f6454549f28d4583</cites><orcidid>0000-0002-3489-9128 ; 0000-0002-1570-5850</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,2104,2116,27931,27932,28255</link.rule.ids></links><search><creatorcontrib>Plumhoff, Alexandra M.</creatorcontrib><creatorcontrib>Plasil, Jakub</creatorcontrib><creatorcontrib>Dachs, Edgar</creatorcontrib><creatorcontrib>Benisek, Artur</creatorcontrib><creatorcontrib>Sejkora, Jiri</creatorcontrib><creatorcontrib>Stevko, Martin</creatorcontrib><creatorcontrib>Rumsey, Mike S.</creatorcontrib><creatorcontrib>Majzlan, Juraj</creatorcontrib><title>Thermodynamic properties, crystal structure and phase relations of pushcharovskite [Cu(AsO3OH) (H2O) center dot 0.5H(2)O], geminite [Cu(AsO3OH)(H2O)] and liroconite [Cu2Al(AsO4)(OH)(4) center dot 4H(2)O]</title><title>European journal of mineralogy (Stuttgart)</title><addtitle>EUR J MINERAL</addtitle><description>The phases pushcharovskite, geminite and liroconite were synthesized or acquired and characterized by powder X-ray diffraction, infrared spectroscopy, electron microprobe analysis, thermogravimetric analysis and optical emission spectrometry, as needed. Their thermodynamic properties were determined by a combination of acid-solution calorimetry and relaxation calorimetry, resulting in Gibbs free energies of formation (Delta(f)G degrees, all values in kilojoules per mole) of -1036.4 +/- 3.8 (pushcharovskite, [Cu(AsO3OH) (H2O) center dot 0.5H(2)O] and -926.7 +/- 3.2 (geminite, [Cu(AsO3OH) (H2O). For the natural liroconite (Cu2Al](AsO4)(0.83)(PO4)(0.17)] (OH)(4) center dot 4H(2)O), Delta(f)G degrees = -2996.3 +/- 9.2 kJ mol(-1). The estimated Delta(f)G degrees for the endmember Cu2Al(AsO4)(OH)(4) center dot 4H(2)O is -2931.6 kJ mol(-1). The crystal structure of liroconite was refined (R-1 = 1.96 % for 962 reflections with I &gt; 3 sigma (I)) by single-crystal X-ray diffraction and the positions of H atoms, not known previously, were determined. Liroconite is a rare mineral, except for several localities, notably Wheal Gorland in England. Thermodynamic modelling showed that liroconite will be preferred over olivenite if the Al(III) concentration in the fluid reaches levels needed for saturation with X-ray amorphous Al(OH)(3). We assume that such fluids are responsible for the liroconite formation during contemporaneous oxidation of primary Cu-As ores and pervasive kaolinization of the host peraluminous granites. pH had to be kept in mildly acidic (5-6), and the activities of dissolved silica were too low to form dioptase. The main stage with abundant liroconite formation was preceded by an acidic episode with scorodite and pharmacosiderite and followed by a late neutral to mildly basic episode with copper carbonates. Geminite and pushcharovskite, on the other hand, are minerals typical for very acidic solutions. At the studied site in Jachymov (Czech Republic), extremely acidic water precipitates arsenolite; sulfate is removed by formation of gypsum. Geminite associates with other acidic minerals, such as slavkovite, yvonite and minerals of the lindackerite group. Pushcharovskite is metastable with respect to geminite and probably converts quickly to geminite under field conditions.</description><subject>Acidic water</subject><subject>Arsenic</subject><subject>Calorimetry</subject><subject>Carbonates</subject><subject>Computational fluid dynamics</subject><subject>Copper</subject><subject>Crystal structure</subject><subject>Electron probe microanalysis</subject><subject>Electron probes</subject><subject>Emission analysis</subject><subject>Gypsum</subject><subject>Heat measurement</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Laboratories</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Optical emission spectroscopy</subject><subject>Optical properties</subject><subject>Oxidation</subject><subject>Physical Sciences</subject><subject>Precipitates</subject><subject>Science &amp; Technology</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Single crystals</subject><subject>Software</subject><subject>Spectrometry</subject><subject>Spectrum analysis</subject><subject>Thermodynamic models</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><subject>X ray powder diffraction</subject><subject>X-ray diffraction</subject><issn>0935-1221</issn><issn>1617-4011</issn><issn>1617-4011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkUGP0zAQhSMEEmXhzNUSl1ZsWI_tJM6xqmC70kq5LCe0siaOvU1J42I7i_ob-VO47bISnJAPY42-92Y0L8veA_1UQC2uzHaXc5YzWeSMMvoim0EJVS4owMtsRmte5MAYvM7ehLClFLgQdJb9utsYv3PdYcRdr8neu73xsTfhkmh_CBEHEqKfdJy8ITh2ZL_BYIg3A8bejYE4S_ZT2OgNevcYvvfRkG-rab4MDW_WCzJfs2ZBtBmj8aRzkaRt13O2aO4vyYPZ9eM_ghN_f5o09N5p9wdgy-HIiMX8SIm_PMXZ8W32yuIQzLunepF9_fL5brXOb5vrm9XyNkcmZcxZWZa8EzXqQpedxQprEAWCrLRtRQ0UsaaaMWZBallxbktRpFdbJjtRSH6R3Zx9O4dbtff9Dv1BOezVqeH8g8J0Qz0YVXIDrWw5RaiEraoWNFjZSQReIdSYvD6cvdLlf0wmRLV1kx_T-ooJKkVdsKJK1NWZ0t6F4I19ngpUHdNXKX3FmUrpq2P6SSHPip-mdTbo3ozaPKsopQUHKRlPPwqrPp7SXLlpjEn68f-l_Df_Yb9U</recordid><startdate>20200511</startdate><enddate>20200511</enddate><creator>Plumhoff, Alexandra M.</creator><creator>Plasil, Jakub</creator><creator>Dachs, Edgar</creator><creator>Benisek, Artur</creator><creator>Sejkora, Jiri</creator><creator>Stevko, Martin</creator><creator>Rumsey, Mike S.</creator><creator>Majzlan, Juraj</creator><general>Copernicus Gesellschaft Mbh</general><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3489-9128</orcidid><orcidid>https://orcid.org/0000-0002-1570-5850</orcidid></search><sort><creationdate>20200511</creationdate><title>Thermodynamic properties, crystal structure and phase relations of pushcharovskite [Cu(AsO3OH) (H2O) center dot 0.5H(2)O], geminite [Cu(AsO3OH)(H2O)] and liroconite [Cu2Al(AsO4)(OH)(4) center dot 4H(2)O]</title><author>Plumhoff, Alexandra M. ; Plasil, Jakub ; Dachs, Edgar ; Benisek, Artur ; Sejkora, Jiri ; Stevko, Martin ; Rumsey, Mike S. ; Majzlan, Juraj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a288t-26663d49ac5c6dfa7a9145a187cfb4910aa90c222f18c8733f6454549f28d4583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acidic water</topic><topic>Arsenic</topic><topic>Calorimetry</topic><topic>Carbonates</topic><topic>Computational fluid dynamics</topic><topic>Copper</topic><topic>Crystal structure</topic><topic>Electron probe microanalysis</topic><topic>Electron probes</topic><topic>Emission analysis</topic><topic>Gypsum</topic><topic>Heat measurement</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Laboratories</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Optical emission spectroscopy</topic><topic>Optical properties</topic><topic>Oxidation</topic><topic>Physical Sciences</topic><topic>Precipitates</topic><topic>Science &amp; Technology</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Single crystals</topic><topic>Software</topic><topic>Spectrometry</topic><topic>Spectrum analysis</topic><topic>Thermodynamic models</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><topic>X ray powder diffraction</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plumhoff, Alexandra M.</creatorcontrib><creatorcontrib>Plasil, Jakub</creatorcontrib><creatorcontrib>Dachs, Edgar</creatorcontrib><creatorcontrib>Benisek, Artur</creatorcontrib><creatorcontrib>Sejkora, Jiri</creatorcontrib><creatorcontrib>Stevko, Martin</creatorcontrib><creatorcontrib>Rumsey, Mike S.</creatorcontrib><creatorcontrib>Majzlan, Juraj</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>European journal of mineralogy (Stuttgart)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plumhoff, Alexandra M.</au><au>Plasil, Jakub</au><au>Dachs, Edgar</au><au>Benisek, Artur</au><au>Sejkora, Jiri</au><au>Stevko, Martin</au><au>Rumsey, Mike S.</au><au>Majzlan, Juraj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic properties, crystal structure and phase relations of pushcharovskite [Cu(AsO3OH) (H2O) center dot 0.5H(2)O], geminite [Cu(AsO3OH)(H2O)] and liroconite [Cu2Al(AsO4)(OH)(4) center dot 4H(2)O]</atitle><jtitle>European journal of mineralogy (Stuttgart)</jtitle><stitle>EUR J MINERAL</stitle><date>2020-05-11</date><risdate>2020</risdate><volume>32</volume><issue>3</issue><spage>285</spage><epage>304</epage><pages>285-304</pages><issn>0935-1221</issn><issn>1617-4011</issn><eissn>1617-4011</eissn><abstract>The phases pushcharovskite, geminite and liroconite were synthesized or acquired and characterized by powder X-ray diffraction, infrared spectroscopy, electron microprobe analysis, thermogravimetric analysis and optical emission spectrometry, as needed. Their thermodynamic properties were determined by a combination of acid-solution calorimetry and relaxation calorimetry, resulting in Gibbs free energies of formation (Delta(f)G degrees, all values in kilojoules per mole) of -1036.4 +/- 3.8 (pushcharovskite, [Cu(AsO3OH) (H2O) center dot 0.5H(2)O] and -926.7 +/- 3.2 (geminite, [Cu(AsO3OH) (H2O). For the natural liroconite (Cu2Al](AsO4)(0.83)(PO4)(0.17)] (OH)(4) center dot 4H(2)O), Delta(f)G degrees = -2996.3 +/- 9.2 kJ mol(-1). The estimated Delta(f)G degrees for the endmember Cu2Al(AsO4)(OH)(4) center dot 4H(2)O is -2931.6 kJ mol(-1). The crystal structure of liroconite was refined (R-1 = 1.96 % for 962 reflections with I &gt; 3 sigma (I)) by single-crystal X-ray diffraction and the positions of H atoms, not known previously, were determined. Liroconite is a rare mineral, except for several localities, notably Wheal Gorland in England. Thermodynamic modelling showed that liroconite will be preferred over olivenite if the Al(III) concentration in the fluid reaches levels needed for saturation with X-ray amorphous Al(OH)(3). We assume that such fluids are responsible for the liroconite formation during contemporaneous oxidation of primary Cu-As ores and pervasive kaolinization of the host peraluminous granites. pH had to be kept in mildly acidic (5-6), and the activities of dissolved silica were too low to form dioptase. The main stage with abundant liroconite formation was preceded by an acidic episode with scorodite and pharmacosiderite and followed by a late neutral to mildly basic episode with copper carbonates. Geminite and pushcharovskite, on the other hand, are minerals typical for very acidic solutions. At the studied site in Jachymov (Czech Republic), extremely acidic water precipitates arsenolite; sulfate is removed by formation of gypsum. Geminite associates with other acidic minerals, such as slavkovite, yvonite and minerals of the lindackerite group. Pushcharovskite is metastable with respect to geminite and probably converts quickly to geminite under field conditions.</abstract><cop>GOTTINGEN</cop><pub>Copernicus Gesellschaft Mbh</pub><doi>10.5194/ejm-32-285-2020</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3489-9128</orcidid><orcidid>https://orcid.org/0000-0002-1570-5850</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-1221
ispartof European journal of mineralogy (Stuttgart), 2020-05, Vol.32 (3), p.285-304
issn 0935-1221
1617-4011
1617-4011
language eng
recordid cdi_proquest_journals_2408495257
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Acidic water
Arsenic
Calorimetry
Carbonates
Computational fluid dynamics
Copper
Crystal structure
Electron probe microanalysis
Electron probes
Emission analysis
Gypsum
Heat measurement
Infrared analysis
Infrared spectroscopy
Laboratories
Mineralization
Mineralogy
Minerals
Optical emission spectroscopy
Optical properties
Oxidation
Physical Sciences
Precipitates
Science & Technology
Silica
Silicon dioxide
Single crystals
Software
Spectrometry
Spectrum analysis
Thermodynamic models
Thermodynamic properties
Thermogravimetric analysis
X ray powder diffraction
X-ray diffraction
title Thermodynamic properties, crystal structure and phase relations of pushcharovskite [Cu(AsO3OH) (H2O) center dot 0.5H(2)O], geminite [Cu(AsO3OH)(H2O)] and liroconite [Cu2Al(AsO4)(OH)(4) center dot 4H(2)O]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T21%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20properties,%20crystal%20structure%20and%20phase%20relations%20of%20pushcharovskite%20%5BCu(AsO3OH)%20(H2O)%20center%20dot%200.5H(2)O%5D,%20geminite%20%5BCu(AsO3OH)(H2O)%5D%20and%20liroconite%20%5BCu2Al(AsO4)(OH)(4)%20center%20dot%204H(2)O%5D&rft.jtitle=European%20journal%20of%20mineralogy%20(Stuttgart)&rft.au=Plumhoff,%20Alexandra%20M.&rft.date=2020-05-11&rft.volume=32&rft.issue=3&rft.spage=285&rft.epage=304&rft.pages=285-304&rft.issn=0935-1221&rft.eissn=1617-4011&rft_id=info:doi/10.5194/ejm-32-285-2020&rft_dat=%3Cproquest_cross%3E2408495257%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408495257&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_63e1b8b30a174f77b1c1f8d8a137a19a&rfr_iscdi=true