Modeling and Parameter Optimization of Flexible NC Polishing Vibration of Abrasive Cloth Wheel Based on Sensitivity Analysis
The blisk is a typical cantilever beam structure, which is prone to vibration during the polishing process. This vibration will cause the polishing tool to wear seriously and reduce the surface quality of the blade.In order to control the vibration of polishing process, a method of predicting the RM...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2020 |
creator | Lei, Zhaozhao Xin, Xiaopeng Yang, Rui Lin, Xiaojun Sun, Luzhou |
description | The blisk is a typical cantilever beam structure, which is prone to vibration during the polishing process. This vibration will cause the polishing tool to wear seriously and reduce the surface quality of the blade.In order to control the vibration of polishing process, a method of predicting the RMS (root mean square) value of polishing vibration signal was proposed. Firstly, an empirical model of process parameters for polishing vibration was established by an orthogonal experiment. Then, based on the response surface and sensitivity analysis method, the stability range of the process parameters and the influence on the polishing vibration are obtained. Finally, through the polishing experiment, it is determined that the stable range of each process parameter is reliable. There is no significant vibration during the polishing process. By analyzing the surface texture and surface topography of the blade, the surface quality of the blade meets the requirements. The results showed that the optimal stability ranges of significant parameters through sensitivity analysis are compression depth within [0.6 mm, 0.9 mm], spindle speed within [6000 r/min, 7500 r/min], feed rate within [0.4 mm/min, 0.6 mm/min], and granularity within [400#, 600#]. This study provides a basis for the theoretical research of polishing vibration in the flexible polishing process and the relationship between process parameters and polishing vibration. |
doi_str_mv | 10.1155/2020/5279460 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407983672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407983672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-7303f2f23485bf51a873175cf2d3a6cbe46e700542a75fda874081b04205b003</originalsourceid><addsrcrecordid>eNqF0E1LxDAQBuAiCurqzbMEPGrdyVfTPa7FVcEvUNRbSduJG-m2a9JVV_zxZqno0VOGzDPD8EbRHoVjSqUcMmAwlEyNRAJr0RaVCY8lFWo91MBETBl_2oy2vX8BYFTSdCv6umorrG3zTHRTkVvt9Aw7dORm3tmZ_dSdbRvSGjKp8cMWNZLrjNy2tfXT1cyDLdwvGYfa2zckWd12U_I4RazJifZYkQDusPG2s2-2W5Jxo-ult34n2jC69rj78w6i-8npfXYeX96cXWTjy7jkVHWx4sANM4yLVBZGUp2q8C9Lwyquk7JAkaACkIJpJU0V2gJSWoBgIAsAPogO-rVz174u0Hf5S7tw4QafMwFqlPJEsaCOelW61nuHJp87O9NumVPIV_Hmq3jzn3gDP-x5CKLS7_Y_vd9rDAaN_tN0JFNQ_Bv0_ION</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407983672</pqid></control><display><type>article</type><title>Modeling and Parameter Optimization of Flexible NC Polishing Vibration of Abrasive Cloth Wheel Based on Sensitivity Analysis</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Lei, Zhaozhao ; Xin, Xiaopeng ; Yang, Rui ; Lin, Xiaojun ; Sun, Luzhou</creator><contributor>Jankowski, Łukasz ; Łukasz Jankowski</contributor><creatorcontrib>Lei, Zhaozhao ; Xin, Xiaopeng ; Yang, Rui ; Lin, Xiaojun ; Sun, Luzhou ; Jankowski, Łukasz ; Łukasz Jankowski</creatorcontrib><description>The blisk is a typical cantilever beam structure, which is prone to vibration during the polishing process. This vibration will cause the polishing tool to wear seriously and reduce the surface quality of the blade.In order to control the vibration of polishing process, a method of predicting the RMS (root mean square) value of polishing vibration signal was proposed. Firstly, an empirical model of process parameters for polishing vibration was established by an orthogonal experiment. Then, based on the response surface and sensitivity analysis method, the stability range of the process parameters and the influence on the polishing vibration are obtained. Finally, through the polishing experiment, it is determined that the stable range of each process parameter is reliable. There is no significant vibration during the polishing process. By analyzing the surface texture and surface topography of the blade, the surface quality of the blade meets the requirements. The results showed that the optimal stability ranges of significant parameters through sensitivity analysis are compression depth within [0.6 mm, 0.9 mm], spindle speed within [6000 r/min, 7500 r/min], feed rate within [0.4 mm/min, 0.6 mm/min], and granularity within [400#, 600#]. This study provides a basis for the theoretical research of polishing vibration in the flexible polishing process and the relationship between process parameters and polishing vibration.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/5279460</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Abrasive wheels ; Cantilever beams ; Cloth ; Empirical analysis ; Engineering ; Experiments ; Feed rate ; Magnesium alloys ; Mathematical models ; Mechanical properties ; Optimization ; Parameter sensitivity ; Polishing ; Process parameters ; Quality ; Regression analysis ; Response surface methodology ; Sensitivity analysis ; Sensors ; Signal processing ; Stability analysis ; Surface layers ; Surface properties ; Surface stability ; Titanium alloys ; Tool wear ; Vibration analysis ; Vibration control</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-12</ispartof><rights>Copyright © 2020 Xiaojun Lin et al.</rights><rights>Copyright © 2020 Xiaojun Lin et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-7303f2f23485bf51a873175cf2d3a6cbe46e700542a75fda874081b04205b003</cites><orcidid>0000-0001-5729-8782 ; 0000-0002-2221-4195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Jankowski, Łukasz</contributor><contributor>Łukasz Jankowski</contributor><creatorcontrib>Lei, Zhaozhao</creatorcontrib><creatorcontrib>Xin, Xiaopeng</creatorcontrib><creatorcontrib>Yang, Rui</creatorcontrib><creatorcontrib>Lin, Xiaojun</creatorcontrib><creatorcontrib>Sun, Luzhou</creatorcontrib><title>Modeling and Parameter Optimization of Flexible NC Polishing Vibration of Abrasive Cloth Wheel Based on Sensitivity Analysis</title><title>Mathematical problems in engineering</title><description>The blisk is a typical cantilever beam structure, which is prone to vibration during the polishing process. This vibration will cause the polishing tool to wear seriously and reduce the surface quality of the blade.In order to control the vibration of polishing process, a method of predicting the RMS (root mean square) value of polishing vibration signal was proposed. Firstly, an empirical model of process parameters for polishing vibration was established by an orthogonal experiment. Then, based on the response surface and sensitivity analysis method, the stability range of the process parameters and the influence on the polishing vibration are obtained. Finally, through the polishing experiment, it is determined that the stable range of each process parameter is reliable. There is no significant vibration during the polishing process. By analyzing the surface texture and surface topography of the blade, the surface quality of the blade meets the requirements. The results showed that the optimal stability ranges of significant parameters through sensitivity analysis are compression depth within [0.6 mm, 0.9 mm], spindle speed within [6000 r/min, 7500 r/min], feed rate within [0.4 mm/min, 0.6 mm/min], and granularity within [400#, 600#]. This study provides a basis for the theoretical research of polishing vibration in the flexible polishing process and the relationship between process parameters and polishing vibration.</description><subject>Abrasive wheels</subject><subject>Cantilever beams</subject><subject>Cloth</subject><subject>Empirical analysis</subject><subject>Engineering</subject><subject>Experiments</subject><subject>Feed rate</subject><subject>Magnesium alloys</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Optimization</subject><subject>Parameter sensitivity</subject><subject>Polishing</subject><subject>Process parameters</subject><subject>Quality</subject><subject>Regression analysis</subject><subject>Response surface methodology</subject><subject>Sensitivity analysis</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Stability analysis</subject><subject>Surface layers</subject><subject>Surface properties</subject><subject>Surface stability</subject><subject>Titanium alloys</subject><subject>Tool wear</subject><subject>Vibration analysis</subject><subject>Vibration control</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0E1LxDAQBuAiCurqzbMEPGrdyVfTPa7FVcEvUNRbSduJG-m2a9JVV_zxZqno0VOGzDPD8EbRHoVjSqUcMmAwlEyNRAJr0RaVCY8lFWo91MBETBl_2oy2vX8BYFTSdCv6umorrG3zTHRTkVvt9Aw7dORm3tmZ_dSdbRvSGjKp8cMWNZLrjNy2tfXT1cyDLdwvGYfa2zckWd12U_I4RazJifZYkQDusPG2s2-2W5Jxo-ult34n2jC69rj78w6i-8npfXYeX96cXWTjy7jkVHWx4sANM4yLVBZGUp2q8C9Lwyquk7JAkaACkIJpJU0V2gJSWoBgIAsAPogO-rVz174u0Hf5S7tw4QafMwFqlPJEsaCOelW61nuHJp87O9NumVPIV_Hmq3jzn3gDP-x5CKLS7_Y_vd9rDAaN_tN0JFNQ_Bv0_ION</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Lei, Zhaozhao</creator><creator>Xin, Xiaopeng</creator><creator>Yang, Rui</creator><creator>Lin, Xiaojun</creator><creator>Sun, Luzhou</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-5729-8782</orcidid><orcidid>https://orcid.org/0000-0002-2221-4195</orcidid></search><sort><creationdate>2020</creationdate><title>Modeling and Parameter Optimization of Flexible NC Polishing Vibration of Abrasive Cloth Wheel Based on Sensitivity Analysis</title><author>Lei, Zhaozhao ; Xin, Xiaopeng ; Yang, Rui ; Lin, Xiaojun ; Sun, Luzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-7303f2f23485bf51a873175cf2d3a6cbe46e700542a75fda874081b04205b003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abrasive wheels</topic><topic>Cantilever beams</topic><topic>Cloth</topic><topic>Empirical analysis</topic><topic>Engineering</topic><topic>Experiments</topic><topic>Feed rate</topic><topic>Magnesium alloys</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Optimization</topic><topic>Parameter sensitivity</topic><topic>Polishing</topic><topic>Process parameters</topic><topic>Quality</topic><topic>Regression analysis</topic><topic>Response surface methodology</topic><topic>Sensitivity analysis</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Stability analysis</topic><topic>Surface layers</topic><topic>Surface properties</topic><topic>Surface stability</topic><topic>Titanium alloys</topic><topic>Tool wear</topic><topic>Vibration analysis</topic><topic>Vibration control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Zhaozhao</creatorcontrib><creatorcontrib>Xin, Xiaopeng</creatorcontrib><creatorcontrib>Yang, Rui</creatorcontrib><creatorcontrib>Lin, Xiaojun</creatorcontrib><creatorcontrib>Sun, Luzhou</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Zhaozhao</au><au>Xin, Xiaopeng</au><au>Yang, Rui</au><au>Lin, Xiaojun</au><au>Sun, Luzhou</au><au>Jankowski, Łukasz</au><au>Łukasz Jankowski</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Parameter Optimization of Flexible NC Polishing Vibration of Abrasive Cloth Wheel Based on Sensitivity Analysis</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The blisk is a typical cantilever beam structure, which is prone to vibration during the polishing process. This vibration will cause the polishing tool to wear seriously and reduce the surface quality of the blade.In order to control the vibration of polishing process, a method of predicting the RMS (root mean square) value of polishing vibration signal was proposed. Firstly, an empirical model of process parameters for polishing vibration was established by an orthogonal experiment. Then, based on the response surface and sensitivity analysis method, the stability range of the process parameters and the influence on the polishing vibration are obtained. Finally, through the polishing experiment, it is determined that the stable range of each process parameter is reliable. There is no significant vibration during the polishing process. By analyzing the surface texture and surface topography of the blade, the surface quality of the blade meets the requirements. The results showed that the optimal stability ranges of significant parameters through sensitivity analysis are compression depth within [0.6 mm, 0.9 mm], spindle speed within [6000 r/min, 7500 r/min], feed rate within [0.4 mm/min, 0.6 mm/min], and granularity within [400#, 600#]. This study provides a basis for the theoretical research of polishing vibration in the flexible polishing process and the relationship between process parameters and polishing vibration.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/5279460</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5729-8782</orcidid><orcidid>https://orcid.org/0000-0002-2221-4195</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-12 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2407983672 |
source | Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Abrasive wheels Cantilever beams Cloth Empirical analysis Engineering Experiments Feed rate Magnesium alloys Mathematical models Mechanical properties Optimization Parameter sensitivity Polishing Process parameters Quality Regression analysis Response surface methodology Sensitivity analysis Sensors Signal processing Stability analysis Surface layers Surface properties Surface stability Titanium alloys Tool wear Vibration analysis Vibration control |
title | Modeling and Parameter Optimization of Flexible NC Polishing Vibration of Abrasive Cloth Wheel Based on Sensitivity Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A16%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Parameter%20Optimization%20of%20Flexible%20NC%20Polishing%20Vibration%20of%20Abrasive%20Cloth%20Wheel%20Based%20on%20Sensitivity%20Analysis&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Lei,%20Zhaozhao&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/5279460&rft_dat=%3Cproquest_cross%3E2407983672%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407983672&rft_id=info:pmid/&rfr_iscdi=true |