Modeling and Parameter Optimization of Flexible NC Polishing Vibration of Abrasive Cloth Wheel Based on Sensitivity Analysis

The blisk is a typical cantilever beam structure, which is prone to vibration during the polishing process. This vibration will cause the polishing tool to wear seriously and reduce the surface quality of the blade.In order to control the vibration of polishing process, a method of predicting the RM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-12
Hauptverfasser: Lei, Zhaozhao, Xin, Xiaopeng, Yang, Rui, Lin, Xiaojun, Sun, Luzhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 2020
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2020
creator Lei, Zhaozhao
Xin, Xiaopeng
Yang, Rui
Lin, Xiaojun
Sun, Luzhou
description The blisk is a typical cantilever beam structure, which is prone to vibration during the polishing process. This vibration will cause the polishing tool to wear seriously and reduce the surface quality of the blade.In order to control the vibration of polishing process, a method of predicting the RMS (root mean square) value of polishing vibration signal was proposed. Firstly, an empirical model of process parameters for polishing vibration was established by an orthogonal experiment. Then, based on the response surface and sensitivity analysis method, the stability range of the process parameters and the influence on the polishing vibration are obtained. Finally, through the polishing experiment, it is determined that the stable range of each process parameter is reliable. There is no significant vibration during the polishing process. By analyzing the surface texture and surface topography of the blade, the surface quality of the blade meets the requirements. The results showed that the optimal stability ranges of significant parameters through sensitivity analysis are compression depth within [0.6 mm, 0.9 mm], spindle speed within [6000 r/min, 7500 r/min], feed rate within [0.4 mm/min, 0.6 mm/min], and granularity within [400#, 600#]. This study provides a basis for the theoretical research of polishing vibration in the flexible polishing process and the relationship between process parameters and polishing vibration.
doi_str_mv 10.1155/2020/5279460
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407983672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407983672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-7303f2f23485bf51a873175cf2d3a6cbe46e700542a75fda874081b04205b003</originalsourceid><addsrcrecordid>eNqF0E1LxDAQBuAiCurqzbMEPGrdyVfTPa7FVcEvUNRbSduJG-m2a9JVV_zxZqno0VOGzDPD8EbRHoVjSqUcMmAwlEyNRAJr0RaVCY8lFWo91MBETBl_2oy2vX8BYFTSdCv6umorrG3zTHRTkVvt9Aw7dORm3tmZ_dSdbRvSGjKp8cMWNZLrjNy2tfXT1cyDLdwvGYfa2zckWd12U_I4RazJifZYkQDusPG2s2-2W5Jxo-ult34n2jC69rj78w6i-8npfXYeX96cXWTjy7jkVHWx4sANM4yLVBZGUp2q8C9Lwyquk7JAkaACkIJpJU0V2gJSWoBgIAsAPogO-rVz174u0Hf5S7tw4QafMwFqlPJEsaCOelW61nuHJp87O9NumVPIV_Hmq3jzn3gDP-x5CKLS7_Y_vd9rDAaN_tN0JFNQ_Bv0_ION</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407983672</pqid></control><display><type>article</type><title>Modeling and Parameter Optimization of Flexible NC Polishing Vibration of Abrasive Cloth Wheel Based on Sensitivity Analysis</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Lei, Zhaozhao ; Xin, Xiaopeng ; Yang, Rui ; Lin, Xiaojun ; Sun, Luzhou</creator><contributor>Jankowski, Łukasz ; Łukasz Jankowski</contributor><creatorcontrib>Lei, Zhaozhao ; Xin, Xiaopeng ; Yang, Rui ; Lin, Xiaojun ; Sun, Luzhou ; Jankowski, Łukasz ; Łukasz Jankowski</creatorcontrib><description>The blisk is a typical cantilever beam structure, which is prone to vibration during the polishing process. This vibration will cause the polishing tool to wear seriously and reduce the surface quality of the blade.In order to control the vibration of polishing process, a method of predicting the RMS (root mean square) value of polishing vibration signal was proposed. Firstly, an empirical model of process parameters for polishing vibration was established by an orthogonal experiment. Then, based on the response surface and sensitivity analysis method, the stability range of the process parameters and the influence on the polishing vibration are obtained. Finally, through the polishing experiment, it is determined that the stable range of each process parameter is reliable. There is no significant vibration during the polishing process. By analyzing the surface texture and surface topography of the blade, the surface quality of the blade meets the requirements. The results showed that the optimal stability ranges of significant parameters through sensitivity analysis are compression depth within [0.6 mm, 0.9 mm], spindle speed within [6000 r/min, 7500 r/min], feed rate within [0.4 mm/min, 0.6 mm/min], and granularity within [400#, 600#]. This study provides a basis for the theoretical research of polishing vibration in the flexible polishing process and the relationship between process parameters and polishing vibration.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/5279460</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Abrasive wheels ; Cantilever beams ; Cloth ; Empirical analysis ; Engineering ; Experiments ; Feed rate ; Magnesium alloys ; Mathematical models ; Mechanical properties ; Optimization ; Parameter sensitivity ; Polishing ; Process parameters ; Quality ; Regression analysis ; Response surface methodology ; Sensitivity analysis ; Sensors ; Signal processing ; Stability analysis ; Surface layers ; Surface properties ; Surface stability ; Titanium alloys ; Tool wear ; Vibration analysis ; Vibration control</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-12</ispartof><rights>Copyright © 2020 Xiaojun Lin et al.</rights><rights>Copyright © 2020 Xiaojun Lin et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-7303f2f23485bf51a873175cf2d3a6cbe46e700542a75fda874081b04205b003</cites><orcidid>0000-0001-5729-8782 ; 0000-0002-2221-4195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Jankowski, Łukasz</contributor><contributor>Łukasz Jankowski</contributor><creatorcontrib>Lei, Zhaozhao</creatorcontrib><creatorcontrib>Xin, Xiaopeng</creatorcontrib><creatorcontrib>Yang, Rui</creatorcontrib><creatorcontrib>Lin, Xiaojun</creatorcontrib><creatorcontrib>Sun, Luzhou</creatorcontrib><title>Modeling and Parameter Optimization of Flexible NC Polishing Vibration of Abrasive Cloth Wheel Based on Sensitivity Analysis</title><title>Mathematical problems in engineering</title><description>The blisk is a typical cantilever beam structure, which is prone to vibration during the polishing process. This vibration will cause the polishing tool to wear seriously and reduce the surface quality of the blade.In order to control the vibration of polishing process, a method of predicting the RMS (root mean square) value of polishing vibration signal was proposed. Firstly, an empirical model of process parameters for polishing vibration was established by an orthogonal experiment. Then, based on the response surface and sensitivity analysis method, the stability range of the process parameters and the influence on the polishing vibration are obtained. Finally, through the polishing experiment, it is determined that the stable range of each process parameter is reliable. There is no significant vibration during the polishing process. By analyzing the surface texture and surface topography of the blade, the surface quality of the blade meets the requirements. The results showed that the optimal stability ranges of significant parameters through sensitivity analysis are compression depth within [0.6 mm, 0.9 mm], spindle speed within [6000 r/min, 7500 r/min], feed rate within [0.4 mm/min, 0.6 mm/min], and granularity within [400#, 600#]. This study provides a basis for the theoretical research of polishing vibration in the flexible polishing process and the relationship between process parameters and polishing vibration.</description><subject>Abrasive wheels</subject><subject>Cantilever beams</subject><subject>Cloth</subject><subject>Empirical analysis</subject><subject>Engineering</subject><subject>Experiments</subject><subject>Feed rate</subject><subject>Magnesium alloys</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Optimization</subject><subject>Parameter sensitivity</subject><subject>Polishing</subject><subject>Process parameters</subject><subject>Quality</subject><subject>Regression analysis</subject><subject>Response surface methodology</subject><subject>Sensitivity analysis</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Stability analysis</subject><subject>Surface layers</subject><subject>Surface properties</subject><subject>Surface stability</subject><subject>Titanium alloys</subject><subject>Tool wear</subject><subject>Vibration analysis</subject><subject>Vibration control</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0E1LxDAQBuAiCurqzbMEPGrdyVfTPa7FVcEvUNRbSduJG-m2a9JVV_zxZqno0VOGzDPD8EbRHoVjSqUcMmAwlEyNRAJr0RaVCY8lFWo91MBETBl_2oy2vX8BYFTSdCv6umorrG3zTHRTkVvt9Aw7dORm3tmZ_dSdbRvSGjKp8cMWNZLrjNy2tfXT1cyDLdwvGYfa2zckWd12U_I4RazJifZYkQDusPG2s2-2W5Jxo-ult34n2jC69rj78w6i-8npfXYeX96cXWTjy7jkVHWx4sANM4yLVBZGUp2q8C9Lwyquk7JAkaACkIJpJU0V2gJSWoBgIAsAPogO-rVz174u0Hf5S7tw4QafMwFqlPJEsaCOelW61nuHJp87O9NumVPIV_Hmq3jzn3gDP-x5CKLS7_Y_vd9rDAaN_tN0JFNQ_Bv0_ION</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Lei, Zhaozhao</creator><creator>Xin, Xiaopeng</creator><creator>Yang, Rui</creator><creator>Lin, Xiaojun</creator><creator>Sun, Luzhou</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-5729-8782</orcidid><orcidid>https://orcid.org/0000-0002-2221-4195</orcidid></search><sort><creationdate>2020</creationdate><title>Modeling and Parameter Optimization of Flexible NC Polishing Vibration of Abrasive Cloth Wheel Based on Sensitivity Analysis</title><author>Lei, Zhaozhao ; Xin, Xiaopeng ; Yang, Rui ; Lin, Xiaojun ; Sun, Luzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-7303f2f23485bf51a873175cf2d3a6cbe46e700542a75fda874081b04205b003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abrasive wheels</topic><topic>Cantilever beams</topic><topic>Cloth</topic><topic>Empirical analysis</topic><topic>Engineering</topic><topic>Experiments</topic><topic>Feed rate</topic><topic>Magnesium alloys</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Optimization</topic><topic>Parameter sensitivity</topic><topic>Polishing</topic><topic>Process parameters</topic><topic>Quality</topic><topic>Regression analysis</topic><topic>Response surface methodology</topic><topic>Sensitivity analysis</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Stability analysis</topic><topic>Surface layers</topic><topic>Surface properties</topic><topic>Surface stability</topic><topic>Titanium alloys</topic><topic>Tool wear</topic><topic>Vibration analysis</topic><topic>Vibration control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Zhaozhao</creatorcontrib><creatorcontrib>Xin, Xiaopeng</creatorcontrib><creatorcontrib>Yang, Rui</creatorcontrib><creatorcontrib>Lin, Xiaojun</creatorcontrib><creatorcontrib>Sun, Luzhou</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Zhaozhao</au><au>Xin, Xiaopeng</au><au>Yang, Rui</au><au>Lin, Xiaojun</au><au>Sun, Luzhou</au><au>Jankowski, Łukasz</au><au>Łukasz Jankowski</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Parameter Optimization of Flexible NC Polishing Vibration of Abrasive Cloth Wheel Based on Sensitivity Analysis</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The blisk is a typical cantilever beam structure, which is prone to vibration during the polishing process. This vibration will cause the polishing tool to wear seriously and reduce the surface quality of the blade.In order to control the vibration of polishing process, a method of predicting the RMS (root mean square) value of polishing vibration signal was proposed. Firstly, an empirical model of process parameters for polishing vibration was established by an orthogonal experiment. Then, based on the response surface and sensitivity analysis method, the stability range of the process parameters and the influence on the polishing vibration are obtained. Finally, through the polishing experiment, it is determined that the stable range of each process parameter is reliable. There is no significant vibration during the polishing process. By analyzing the surface texture and surface topography of the blade, the surface quality of the blade meets the requirements. The results showed that the optimal stability ranges of significant parameters through sensitivity analysis are compression depth within [0.6 mm, 0.9 mm], spindle speed within [6000 r/min, 7500 r/min], feed rate within [0.4 mm/min, 0.6 mm/min], and granularity within [400#, 600#]. This study provides a basis for the theoretical research of polishing vibration in the flexible polishing process and the relationship between process parameters and polishing vibration.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/5279460</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5729-8782</orcidid><orcidid>https://orcid.org/0000-0002-2221-4195</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-12
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2407983672
source Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Abrasive wheels
Cantilever beams
Cloth
Empirical analysis
Engineering
Experiments
Feed rate
Magnesium alloys
Mathematical models
Mechanical properties
Optimization
Parameter sensitivity
Polishing
Process parameters
Quality
Regression analysis
Response surface methodology
Sensitivity analysis
Sensors
Signal processing
Stability analysis
Surface layers
Surface properties
Surface stability
Titanium alloys
Tool wear
Vibration analysis
Vibration control
title Modeling and Parameter Optimization of Flexible NC Polishing Vibration of Abrasive Cloth Wheel Based on Sensitivity Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A16%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Parameter%20Optimization%20of%20Flexible%20NC%20Polishing%20Vibration%20of%20Abrasive%20Cloth%20Wheel%20Based%20on%20Sensitivity%20Analysis&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Lei,%20Zhaozhao&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/5279460&rft_dat=%3Cproquest_cross%3E2407983672%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407983672&rft_id=info:pmid/&rfr_iscdi=true