Accurate Suitability Evaluation of Large-Scale Roof Greening Based on RS and GIS Methods

Under increasingly low urban land resources, carrying out roof greening to exploit new green space is a good strategy for sustainable development. Therefore, it is necessary to evaluate the suitability of roof greening for buildings in cities. However, most current evaluation methods are based on qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2020-06, Vol.12 (11), p.4375
Hauptverfasser: Xu, Nan, Luo, Jiancheng, Zuo, Jin, Hu, Xiaodong, Dong, Jing, Wu, Tianjun, Wu, Songliang, Liu, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 4375
container_title Sustainability
container_volume 12
creator Xu, Nan
Luo, Jiancheng
Zuo, Jin
Hu, Xiaodong
Dong, Jing
Wu, Tianjun
Wu, Songliang
Liu, Hao
description Under increasingly low urban land resources, carrying out roof greening to exploit new green space is a good strategy for sustainable development. Therefore, it is necessary to evaluate the suitability of roof greening for buildings in cities. However, most current evaluation methods are based on qualitative and conceptual research. In this paper, a methodological framework for roof greening suitability evaluation is proposed based on the basic units of building roofs extracted via deep learning technologies. The building, environmental and social criteria related to roof greening are extracted using technologies such as deep learning, machine learning, remote sensing (RS) methods and geographic information system (GIS) methods. The technique for order preference by similarity to an ideal solution (TOPSIS) method is applied to quantify the suitability of each roof, and Sobol sensitivity analysis of the score results is conducted. The experiment on Xiamen Island shows that the final evaluation results are highly sensitive to the changes in weight of the green space distance, population density and the air pollution level. This framework is helpful for the quantitative and objective development of roof greening suitability evaluation.
doi_str_mv 10.3390/su12114375
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407957993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407957993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-f2a1de35081d0c32f6f2826ef6dff587ead8b7da29e8c709495015ed43db02413</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOOZu_AUB74RqPpqmuZxjzsFEWBW8K1lyMjtqM5N0sH9vZYKem_fw8nAOPAhdU3LHuSL3saeM0pxLcYZGjEiaUSLI-b_9Ek1i3JFhOKeKFiP0PjWmDzoBrvom6U3TNumI5wfd9jo1vsPe4ZUOW8gqo1vAaz8UiwDQNd0WP-gIFg_UusK6s3ixrPAzpA9v4xW6cLqNMPnNMXp7nL_OnrLVy2I5m64yw5RImWOaWuCClNQSw5krHCtZAa6wzolSgrblRlrNFJRGEpUrQagAm3O7ISynfIxuTnf3wX_1EFO9833ohpc1y4lUQirFB-r2RJngYwzg6n1oPnU41pTUP_LqP3n8GwWHX-M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407957993</pqid></control><display><type>article</type><title>Accurate Suitability Evaluation of Large-Scale Roof Greening Based on RS and GIS Methods</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xu, Nan ; Luo, Jiancheng ; Zuo, Jin ; Hu, Xiaodong ; Dong, Jing ; Wu, Tianjun ; Wu, Songliang ; Liu, Hao</creator><creatorcontrib>Xu, Nan ; Luo, Jiancheng ; Zuo, Jin ; Hu, Xiaodong ; Dong, Jing ; Wu, Tianjun ; Wu, Songliang ; Liu, Hao</creatorcontrib><description>Under increasingly low urban land resources, carrying out roof greening to exploit new green space is a good strategy for sustainable development. Therefore, it is necessary to evaluate the suitability of roof greening for buildings in cities. However, most current evaluation methods are based on qualitative and conceptual research. In this paper, a methodological framework for roof greening suitability evaluation is proposed based on the basic units of building roofs extracted via deep learning technologies. The building, environmental and social criteria related to roof greening are extracted using technologies such as deep learning, machine learning, remote sensing (RS) methods and geographic information system (GIS) methods. The technique for order preference by similarity to an ideal solution (TOPSIS) method is applied to quantify the suitability of each roof, and Sobol sensitivity analysis of the score results is conducted. The experiment on Xiamen Island shows that the final evaluation results are highly sensitive to the changes in weight of the green space distance, population density and the air pollution level. This framework is helpful for the quantitative and objective development of roof greening suitability evaluation.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su12114375</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air pollution ; Buildings ; Cooling ; Deep learning ; Evaluation ; Geographic information systems ; Greening ; Land resources ; Learning algorithms ; Monte Carlo simulation ; Neural networks ; Outdoor air quality ; Pollution levels ; Population density ; Rain ; Remote sensing ; Roofing ; Roofs ; Semantics ; Sensitivity analysis ; Sustainability ; Sustainable development ; Teaching methods ; Urban areas ; Urban planning</subject><ispartof>Sustainability, 2020-06, Vol.12 (11), p.4375</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-f2a1de35081d0c32f6f2826ef6dff587ead8b7da29e8c709495015ed43db02413</citedby><cites>FETCH-LOGICAL-c295t-f2a1de35081d0c32f6f2826ef6dff587ead8b7da29e8c709495015ed43db02413</cites><orcidid>0000-0002-0411-5396 ; 0000-0001-8323-2728 ; 0000-0003-0178-2342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Xu, Nan</creatorcontrib><creatorcontrib>Luo, Jiancheng</creatorcontrib><creatorcontrib>Zuo, Jin</creatorcontrib><creatorcontrib>Hu, Xiaodong</creatorcontrib><creatorcontrib>Dong, Jing</creatorcontrib><creatorcontrib>Wu, Tianjun</creatorcontrib><creatorcontrib>Wu, Songliang</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><title>Accurate Suitability Evaluation of Large-Scale Roof Greening Based on RS and GIS Methods</title><title>Sustainability</title><description>Under increasingly low urban land resources, carrying out roof greening to exploit new green space is a good strategy for sustainable development. Therefore, it is necessary to evaluate the suitability of roof greening for buildings in cities. However, most current evaluation methods are based on qualitative and conceptual research. In this paper, a methodological framework for roof greening suitability evaluation is proposed based on the basic units of building roofs extracted via deep learning technologies. The building, environmental and social criteria related to roof greening are extracted using technologies such as deep learning, machine learning, remote sensing (RS) methods and geographic information system (GIS) methods. The technique for order preference by similarity to an ideal solution (TOPSIS) method is applied to quantify the suitability of each roof, and Sobol sensitivity analysis of the score results is conducted. The experiment on Xiamen Island shows that the final evaluation results are highly sensitive to the changes in weight of the green space distance, population density and the air pollution level. This framework is helpful for the quantitative and objective development of roof greening suitability evaluation.</description><subject>Air pollution</subject><subject>Buildings</subject><subject>Cooling</subject><subject>Deep learning</subject><subject>Evaluation</subject><subject>Geographic information systems</subject><subject>Greening</subject><subject>Land resources</subject><subject>Learning algorithms</subject><subject>Monte Carlo simulation</subject><subject>Neural networks</subject><subject>Outdoor air quality</subject><subject>Pollution levels</subject><subject>Population density</subject><subject>Rain</subject><subject>Remote sensing</subject><subject>Roofing</subject><subject>Roofs</subject><subject>Semantics</subject><subject>Sensitivity analysis</subject><subject>Sustainability</subject><subject>Sustainable development</subject><subject>Teaching methods</subject><subject>Urban areas</subject><subject>Urban planning</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkF1LwzAUhoMoOOZu_AUB74RqPpqmuZxjzsFEWBW8K1lyMjtqM5N0sH9vZYKem_fw8nAOPAhdU3LHuSL3saeM0pxLcYZGjEiaUSLI-b_9Ek1i3JFhOKeKFiP0PjWmDzoBrvom6U3TNumI5wfd9jo1vsPe4ZUOW8gqo1vAaz8UiwDQNd0WP-gIFg_UusK6s3ixrPAzpA9v4xW6cLqNMPnNMXp7nL_OnrLVy2I5m64yw5RImWOaWuCClNQSw5krHCtZAa6wzolSgrblRlrNFJRGEpUrQagAm3O7ISynfIxuTnf3wX_1EFO9833ohpc1y4lUQirFB-r2RJngYwzg6n1oPnU41pTUP_LqP3n8GwWHX-M</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Xu, Nan</creator><creator>Luo, Jiancheng</creator><creator>Zuo, Jin</creator><creator>Hu, Xiaodong</creator><creator>Dong, Jing</creator><creator>Wu, Tianjun</creator><creator>Wu, Songliang</creator><creator>Liu, Hao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-0411-5396</orcidid><orcidid>https://orcid.org/0000-0001-8323-2728</orcidid><orcidid>https://orcid.org/0000-0003-0178-2342</orcidid></search><sort><creationdate>20200601</creationdate><title>Accurate Suitability Evaluation of Large-Scale Roof Greening Based on RS and GIS Methods</title><author>Xu, Nan ; Luo, Jiancheng ; Zuo, Jin ; Hu, Xiaodong ; Dong, Jing ; Wu, Tianjun ; Wu, Songliang ; Liu, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-f2a1de35081d0c32f6f2826ef6dff587ead8b7da29e8c709495015ed43db02413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air pollution</topic><topic>Buildings</topic><topic>Cooling</topic><topic>Deep learning</topic><topic>Evaluation</topic><topic>Geographic information systems</topic><topic>Greening</topic><topic>Land resources</topic><topic>Learning algorithms</topic><topic>Monte Carlo simulation</topic><topic>Neural networks</topic><topic>Outdoor air quality</topic><topic>Pollution levels</topic><topic>Population density</topic><topic>Rain</topic><topic>Remote sensing</topic><topic>Roofing</topic><topic>Roofs</topic><topic>Semantics</topic><topic>Sensitivity analysis</topic><topic>Sustainability</topic><topic>Sustainable development</topic><topic>Teaching methods</topic><topic>Urban areas</topic><topic>Urban planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Nan</creatorcontrib><creatorcontrib>Luo, Jiancheng</creatorcontrib><creatorcontrib>Zuo, Jin</creatorcontrib><creatorcontrib>Hu, Xiaodong</creatorcontrib><creatorcontrib>Dong, Jing</creatorcontrib><creatorcontrib>Wu, Tianjun</creatorcontrib><creatorcontrib>Wu, Songliang</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Nan</au><au>Luo, Jiancheng</au><au>Zuo, Jin</au><au>Hu, Xiaodong</au><au>Dong, Jing</au><au>Wu, Tianjun</au><au>Wu, Songliang</au><au>Liu, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Suitability Evaluation of Large-Scale Roof Greening Based on RS and GIS Methods</atitle><jtitle>Sustainability</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>12</volume><issue>11</issue><spage>4375</spage><pages>4375-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Under increasingly low urban land resources, carrying out roof greening to exploit new green space is a good strategy for sustainable development. Therefore, it is necessary to evaluate the suitability of roof greening for buildings in cities. However, most current evaluation methods are based on qualitative and conceptual research. In this paper, a methodological framework for roof greening suitability evaluation is proposed based on the basic units of building roofs extracted via deep learning technologies. The building, environmental and social criteria related to roof greening are extracted using technologies such as deep learning, machine learning, remote sensing (RS) methods and geographic information system (GIS) methods. The technique for order preference by similarity to an ideal solution (TOPSIS) method is applied to quantify the suitability of each roof, and Sobol sensitivity analysis of the score results is conducted. The experiment on Xiamen Island shows that the final evaluation results are highly sensitive to the changes in weight of the green space distance, population density and the air pollution level. This framework is helpful for the quantitative and objective development of roof greening suitability evaluation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su12114375</doi><orcidid>https://orcid.org/0000-0002-0411-5396</orcidid><orcidid>https://orcid.org/0000-0001-8323-2728</orcidid><orcidid>https://orcid.org/0000-0003-0178-2342</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2020-06, Vol.12 (11), p.4375
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2407957993
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Air pollution
Buildings
Cooling
Deep learning
Evaluation
Geographic information systems
Greening
Land resources
Learning algorithms
Monte Carlo simulation
Neural networks
Outdoor air quality
Pollution levels
Population density
Rain
Remote sensing
Roofing
Roofs
Semantics
Sensitivity analysis
Sustainability
Sustainable development
Teaching methods
Urban areas
Urban planning
title Accurate Suitability Evaluation of Large-Scale Roof Greening Based on RS and GIS Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Suitability%20Evaluation%20of%20Large-Scale%20Roof%20Greening%20Based%20on%20RS%20and%20GIS%20Methods&rft.jtitle=Sustainability&rft.au=Xu,%20Nan&rft.date=2020-06-01&rft.volume=12&rft.issue=11&rft.spage=4375&rft.pages=4375-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su12114375&rft_dat=%3Cproquest_cross%3E2407957993%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407957993&rft_id=info:pmid/&rfr_iscdi=true