The Family of Peanut Fatty Acid Desaturase Genes and a Functional Analysis of Four ω-3 AhFAD3 Members

The synthesis of α-linolenic acid (ALA) requires the activity of ω-3 fatty acid desaturases (ω-3 FADs). The quality of peanut oil would be much improved if the content of ALA could be increased. A scan of the peanut genome revealed that it harbored 36 FAD genes, mapping to 16 of the species’ 20 chro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant molecular biology reporter 2020-06, Vol.38 (2), p.209-221
Hauptverfasser: Peng, Zhenying, Ruan, Jian, Tian, Haiying, Shan, Lei, Meng, Jingjing, Guo, Feng, Zhang, Zhimeng, Ding, Hong, Wan, Shubo, Li, Xinguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 221
container_issue 2
container_start_page 209
container_title Plant molecular biology reporter
container_volume 38
creator Peng, Zhenying
Ruan, Jian
Tian, Haiying
Shan, Lei
Meng, Jingjing
Guo, Feng
Zhang, Zhimeng
Ding, Hong
Wan, Shubo
Li, Xinguo
description The synthesis of α-linolenic acid (ALA) requires the activity of ω-3 fatty acid desaturases (ω-3 FADs). The quality of peanut oil would be much improved if the content of ALA could be increased. A scan of the peanut genome revealed that it harbored 36 FAD genes, mapping to 16 of the species’ 20 chromosomes. A phylogenetic analysis concluded that these genes belonged to six sub-families, namely stearoyl-acyl-acyl carrier protein desaturases ( SAD ), FAD2 , FAD3 , FAD4/5 , FAD6 and FAD7/8 . Of these, FAD3 and FAD7/8 encoded ω-3 FADs, while genes belonging to the other four sub-families encoded ω-6 FADs. Based on RNA-Seq data, each of the 36 FAD genes was shown to be transcribed in non-stressed plants, but there was variation between them with respect to which organs they were transcribed in. Four ω-3 AhFAD3 genes were functionally characterized; when expressed in Arabidopsis thaliana protoplasts, each was localized mainly in the endoplasmic reticulum, while within peanut, the genes were more strongly transcribed in the developing seed than in either the root or the leaf. When constitutively expressed in Arabidopsis thaliana , both the total fatty acid content of the seed and the relative contribution of ALA were increased. The transgenic seedlings also exhibited an improved level of survival when challenged by salinity stress.
doi_str_mv 10.1007/s11105-019-01191-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407816762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407816762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f4ccd0d3b546cc8ced14b172ccdb65ff6c7b0296cce363ac1528966448c7c4f53</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqVwAVaWWBvs2LGdZdSSggSCRVlbjmPTVG1SbGeRI3A6roRLkNixmBlp5r-v0QfgmuBbgrG4C4QQnCNMilSkIAifgBnJRYYKSeQpmGFBc1Rwhs_BRQhbnCAs5Qy49cbCSu_b3Qh7B1-t7oaYFjGOsDRtA5c26Dh4HSxc2c4GqLsGalgNnYlt3-kdLFMbQxuOfNUPHn59IgrLTVUuKXy2-9r6cAnOnN4Fe_U75-Ctul8vHtDTy-pxUT4hQzmNyDFjGtzQOmfcGGlsQ1hNRJa2Nc-d40bUOCvSzSa9NiTPZME5Y9IIw1xO5-Bm8j34_mOwIapt-ig9GFTGsJCEC54lVTapjO9D8Napg2_32o-KYHXMU015qpSn-slT4QTRCQpJ3L1b_2f9D_UN9lB3cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407816762</pqid></control><display><type>article</type><title>The Family of Peanut Fatty Acid Desaturase Genes and a Functional Analysis of Four ω-3 AhFAD3 Members</title><source>SpringerLink Journals - AutoHoldings</source><creator>Peng, Zhenying ; Ruan, Jian ; Tian, Haiying ; Shan, Lei ; Meng, Jingjing ; Guo, Feng ; Zhang, Zhimeng ; Ding, Hong ; Wan, Shubo ; Li, Xinguo</creator><creatorcontrib>Peng, Zhenying ; Ruan, Jian ; Tian, Haiying ; Shan, Lei ; Meng, Jingjing ; Guo, Feng ; Zhang, Zhimeng ; Ding, Hong ; Wan, Shubo ; Li, Xinguo</creatorcontrib><description>The synthesis of α-linolenic acid (ALA) requires the activity of ω-3 fatty acid desaturases (ω-3 FADs). The quality of peanut oil would be much improved if the content of ALA could be increased. A scan of the peanut genome revealed that it harbored 36 FAD genes, mapping to 16 of the species’ 20 chromosomes. A phylogenetic analysis concluded that these genes belonged to six sub-families, namely stearoyl-acyl-acyl carrier protein desaturases ( SAD ), FAD2 , FAD3 , FAD4/5 , FAD6 and FAD7/8 . Of these, FAD3 and FAD7/8 encoded ω-3 FADs, while genes belonging to the other four sub-families encoded ω-6 FADs. Based on RNA-Seq data, each of the 36 FAD genes was shown to be transcribed in non-stressed plants, but there was variation between them with respect to which organs they were transcribed in. Four ω-3 AhFAD3 genes were functionally characterized; when expressed in Arabidopsis thaliana protoplasts, each was localized mainly in the endoplasmic reticulum, while within peanut, the genes were more strongly transcribed in the developing seed than in either the root or the leaf. When constitutively expressed in Arabidopsis thaliana , both the total fatty acid content of the seed and the relative contribution of ALA were increased. The transgenic seedlings also exhibited an improved level of survival when challenged by salinity stress.</description><identifier>ISSN: 0735-9640</identifier><identifier>EISSN: 1572-9818</identifier><identifier>DOI: 10.1007/s11105-019-01191-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acyl carrier protein ; Arabidopsis thaliana ; Bioinformatics ; Biomedical and Life Sciences ; Chromosomes ; Desaturase ; Endoplasmic reticulum ; Fads ; Fatty acids ; Functional analysis ; Gene mapping ; Genes ; Legumes ; Life Sciences ; Linolenic acid ; Mapping ; Metabolomics ; Organs ; Original Paper ; Peanut oil ; Peanuts ; Phylogeny ; Plant Breeding/Biotechnology ; Plant Sciences ; Proteomics ; Protoplasts ; Ribonucleic acid ; RNA ; Seedlings</subject><ispartof>Plant molecular biology reporter, 2020-06, Vol.38 (2), p.209-221</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f4ccd0d3b546cc8ced14b172ccdb65ff6c7b0296cce363ac1528966448c7c4f53</citedby><cites>FETCH-LOGICAL-c363t-f4ccd0d3b546cc8ced14b172ccdb65ff6c7b0296cce363ac1528966448c7c4f53</cites><orcidid>0000-0003-1710-5127</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11105-019-01191-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11105-019-01191-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Peng, Zhenying</creatorcontrib><creatorcontrib>Ruan, Jian</creatorcontrib><creatorcontrib>Tian, Haiying</creatorcontrib><creatorcontrib>Shan, Lei</creatorcontrib><creatorcontrib>Meng, Jingjing</creatorcontrib><creatorcontrib>Guo, Feng</creatorcontrib><creatorcontrib>Zhang, Zhimeng</creatorcontrib><creatorcontrib>Ding, Hong</creatorcontrib><creatorcontrib>Wan, Shubo</creatorcontrib><creatorcontrib>Li, Xinguo</creatorcontrib><title>The Family of Peanut Fatty Acid Desaturase Genes and a Functional Analysis of Four ω-3 AhFAD3 Members</title><title>Plant molecular biology reporter</title><addtitle>Plant Mol Biol Rep</addtitle><description>The synthesis of α-linolenic acid (ALA) requires the activity of ω-3 fatty acid desaturases (ω-3 FADs). The quality of peanut oil would be much improved if the content of ALA could be increased. A scan of the peanut genome revealed that it harbored 36 FAD genes, mapping to 16 of the species’ 20 chromosomes. A phylogenetic analysis concluded that these genes belonged to six sub-families, namely stearoyl-acyl-acyl carrier protein desaturases ( SAD ), FAD2 , FAD3 , FAD4/5 , FAD6 and FAD7/8 . Of these, FAD3 and FAD7/8 encoded ω-3 FADs, while genes belonging to the other four sub-families encoded ω-6 FADs. Based on RNA-Seq data, each of the 36 FAD genes was shown to be transcribed in non-stressed plants, but there was variation between them with respect to which organs they were transcribed in. Four ω-3 AhFAD3 genes were functionally characterized; when expressed in Arabidopsis thaliana protoplasts, each was localized mainly in the endoplasmic reticulum, while within peanut, the genes were more strongly transcribed in the developing seed than in either the root or the leaf. When constitutively expressed in Arabidopsis thaliana , both the total fatty acid content of the seed and the relative contribution of ALA were increased. The transgenic seedlings also exhibited an improved level of survival when challenged by salinity stress.</description><subject>Acyl carrier protein</subject><subject>Arabidopsis thaliana</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Chromosomes</subject><subject>Desaturase</subject><subject>Endoplasmic reticulum</subject><subject>Fads</subject><subject>Fatty acids</subject><subject>Functional analysis</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Legumes</subject><subject>Life Sciences</subject><subject>Linolenic acid</subject><subject>Mapping</subject><subject>Metabolomics</subject><subject>Organs</subject><subject>Original Paper</subject><subject>Peanut oil</subject><subject>Peanuts</subject><subject>Phylogeny</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Sciences</subject><subject>Proteomics</subject><subject>Protoplasts</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Seedlings</subject><issn>0735-9640</issn><issn>1572-9818</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kEFOwzAQRS0EEqVwAVaWWBvs2LGdZdSSggSCRVlbjmPTVG1SbGeRI3A6roRLkNixmBlp5r-v0QfgmuBbgrG4C4QQnCNMilSkIAifgBnJRYYKSeQpmGFBc1Rwhs_BRQhbnCAs5Qy49cbCSu_b3Qh7B1-t7oaYFjGOsDRtA5c26Dh4HSxc2c4GqLsGalgNnYlt3-kdLFMbQxuOfNUPHn59IgrLTVUuKXy2-9r6cAnOnN4Fe_U75-Ctul8vHtDTy-pxUT4hQzmNyDFjGtzQOmfcGGlsQ1hNRJa2Nc-d40bUOCvSzSa9NiTPZME5Y9IIw1xO5-Bm8j34_mOwIapt-ig9GFTGsJCEC54lVTapjO9D8Napg2_32o-KYHXMU015qpSn-slT4QTRCQpJ3L1b_2f9D_UN9lB3cw</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Peng, Zhenying</creator><creator>Ruan, Jian</creator><creator>Tian, Haiying</creator><creator>Shan, Lei</creator><creator>Meng, Jingjing</creator><creator>Guo, Feng</creator><creator>Zhang, Zhimeng</creator><creator>Ding, Hong</creator><creator>Wan, Shubo</creator><creator>Li, Xinguo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-1710-5127</orcidid></search><sort><creationdate>20200601</creationdate><title>The Family of Peanut Fatty Acid Desaturase Genes and a Functional Analysis of Four ω-3 AhFAD3 Members</title><author>Peng, Zhenying ; Ruan, Jian ; Tian, Haiying ; Shan, Lei ; Meng, Jingjing ; Guo, Feng ; Zhang, Zhimeng ; Ding, Hong ; Wan, Shubo ; Li, Xinguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f4ccd0d3b546cc8ced14b172ccdb65ff6c7b0296cce363ac1528966448c7c4f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acyl carrier protein</topic><topic>Arabidopsis thaliana</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Chromosomes</topic><topic>Desaturase</topic><topic>Endoplasmic reticulum</topic><topic>Fads</topic><topic>Fatty acids</topic><topic>Functional analysis</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Legumes</topic><topic>Life Sciences</topic><topic>Linolenic acid</topic><topic>Mapping</topic><topic>Metabolomics</topic><topic>Organs</topic><topic>Original Paper</topic><topic>Peanut oil</topic><topic>Peanuts</topic><topic>Phylogeny</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Sciences</topic><topic>Proteomics</topic><topic>Protoplasts</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Seedlings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Zhenying</creatorcontrib><creatorcontrib>Ruan, Jian</creatorcontrib><creatorcontrib>Tian, Haiying</creatorcontrib><creatorcontrib>Shan, Lei</creatorcontrib><creatorcontrib>Meng, Jingjing</creatorcontrib><creatorcontrib>Guo, Feng</creatorcontrib><creatorcontrib>Zhang, Zhimeng</creatorcontrib><creatorcontrib>Ding, Hong</creatorcontrib><creatorcontrib>Wan, Shubo</creatorcontrib><creatorcontrib>Li, Xinguo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><jtitle>Plant molecular biology reporter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Zhenying</au><au>Ruan, Jian</au><au>Tian, Haiying</au><au>Shan, Lei</au><au>Meng, Jingjing</au><au>Guo, Feng</au><au>Zhang, Zhimeng</au><au>Ding, Hong</au><au>Wan, Shubo</au><au>Li, Xinguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Family of Peanut Fatty Acid Desaturase Genes and a Functional Analysis of Four ω-3 AhFAD3 Members</atitle><jtitle>Plant molecular biology reporter</jtitle><stitle>Plant Mol Biol Rep</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>38</volume><issue>2</issue><spage>209</spage><epage>221</epage><pages>209-221</pages><issn>0735-9640</issn><eissn>1572-9818</eissn><abstract>The synthesis of α-linolenic acid (ALA) requires the activity of ω-3 fatty acid desaturases (ω-3 FADs). The quality of peanut oil would be much improved if the content of ALA could be increased. A scan of the peanut genome revealed that it harbored 36 FAD genes, mapping to 16 of the species’ 20 chromosomes. A phylogenetic analysis concluded that these genes belonged to six sub-families, namely stearoyl-acyl-acyl carrier protein desaturases ( SAD ), FAD2 , FAD3 , FAD4/5 , FAD6 and FAD7/8 . Of these, FAD3 and FAD7/8 encoded ω-3 FADs, while genes belonging to the other four sub-families encoded ω-6 FADs. Based on RNA-Seq data, each of the 36 FAD genes was shown to be transcribed in non-stressed plants, but there was variation between them with respect to which organs they were transcribed in. Four ω-3 AhFAD3 genes were functionally characterized; when expressed in Arabidopsis thaliana protoplasts, each was localized mainly in the endoplasmic reticulum, while within peanut, the genes were more strongly transcribed in the developing seed than in either the root or the leaf. When constitutively expressed in Arabidopsis thaliana , both the total fatty acid content of the seed and the relative contribution of ALA were increased. The transgenic seedlings also exhibited an improved level of survival when challenged by salinity stress.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11105-019-01191-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1710-5127</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0735-9640
ispartof Plant molecular biology reporter, 2020-06, Vol.38 (2), p.209-221
issn 0735-9640
1572-9818
language eng
recordid cdi_proquest_journals_2407816762
source SpringerLink Journals - AutoHoldings
subjects Acyl carrier protein
Arabidopsis thaliana
Bioinformatics
Biomedical and Life Sciences
Chromosomes
Desaturase
Endoplasmic reticulum
Fads
Fatty acids
Functional analysis
Gene mapping
Genes
Legumes
Life Sciences
Linolenic acid
Mapping
Metabolomics
Organs
Original Paper
Peanut oil
Peanuts
Phylogeny
Plant Breeding/Biotechnology
Plant Sciences
Proteomics
Protoplasts
Ribonucleic acid
RNA
Seedlings
title The Family of Peanut Fatty Acid Desaturase Genes and a Functional Analysis of Four ω-3 AhFAD3 Members
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A05%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Family%20of%20Peanut%20Fatty%20Acid%20Desaturase%20Genes%20and%20a%20Functional%20Analysis%20of%20Four%20%CF%89-3%20AhFAD3%20Members&rft.jtitle=Plant%20molecular%20biology%20reporter&rft.au=Peng,%20Zhenying&rft.date=2020-06-01&rft.volume=38&rft.issue=2&rft.spage=209&rft.epage=221&rft.pages=209-221&rft.issn=0735-9640&rft.eissn=1572-9818&rft_id=info:doi/10.1007/s11105-019-01191-0&rft_dat=%3Cproquest_cross%3E2407816762%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407816762&rft_id=info:pmid/&rfr_iscdi=true