Oracle Character Image Retrieval by Combining Deep Neural Networks and Clustering Technology

In this paper, we study the description and retrieval of oracle character images. A great challenge is that there is a big difference between the variants of the same oracle character in character patterns, bringing deep negative impact on the retrieval of oracle character images. To solve this prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IAENG international journal of computer science 2020-05, Vol.47 (2), p.199
Hauptverfasser: Liu, Guoying, Wang, Yangguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 199
container_title IAENG international journal of computer science
container_volume 47
creator Liu, Guoying
Wang, Yangguang
description In this paper, we study the description and retrieval of oracle character images. A great challenge is that there is a big difference between the variants of the same oracle character in character patterns, bringing deep negative impact on the retrieval of oracle character images. To solve this problem, in this paper, an image retrieval method is proposed by combining deep neural networks (DNN) and clustering technology. Firstly, for making full use of the powerful image representation ability of DNN, the deep convolutional neural network is used to extract character-level image features. Then, in order to solve the problem of retrieving variants of oracle characters, the Kmeans++ clustering algorithm is used to divide the oracle character dataset into different subsets of variants. Finally, based on the newly divided data set, a fully connected neural network is trained to get the variant-level features, which are used for the retrieval of oracle character images. Compared to the traditional methods and the DNN-based methods, this method achieves the optimal results on the data set of oracle character images.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2407815223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407815223</sourcerecordid><originalsourceid>FETCH-LOGICAL-p98t-757893c072634d07c4d9954cf9898b13288d6c025423217c8f82e120f2e4b23a3</originalsourceid><addsrcrecordid>eNotjVtLwzAYhoMoOOb-Q8DrQvMlaZJLqafB2EB64YUw0vRrV-2amrTK_r0d7up94D1dkQXTzCQGQFxfOJPZ-y1ZxdiWqRCKay35gnzsgnUd0vxgZxgx0PXRNkjfcAwt_tiOliea-2PZ9m3f0EfEgW5xCrOxxfHXh69IbV_RvJvi3D5nCnSH3ne-Od2Rm9p2EVcXXZLi-anIX5PN7mWdP2ySwegxUVJpw12qIOOiSpUTlTFSuNpoo0vGQesqcylIARyYcrrWgAzSGlCUwC1fkvv_2SH47wnjuP_0U-jnxz2IVGkmATj_A6R_T6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407815223</pqid></control><display><type>article</type><title>Oracle Character Image Retrieval by Combining Deep Neural Networks and Clustering Technology</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Liu, Guoying ; Wang, Yangguang</creator><creatorcontrib>Liu, Guoying ; Wang, Yangguang</creatorcontrib><description>In this paper, we study the description and retrieval of oracle character images. A great challenge is that there is a big difference between the variants of the same oracle character in character patterns, bringing deep negative impact on the retrieval of oracle character images. To solve this problem, in this paper, an image retrieval method is proposed by combining deep neural networks (DNN) and clustering technology. Firstly, for making full use of the powerful image representation ability of DNN, the deep convolutional neural network is used to extract character-level image features. Then, in order to solve the problem of retrieving variants of oracle characters, the Kmeans++ clustering algorithm is used to divide the oracle character dataset into different subsets of variants. Finally, based on the newly divided data set, a fully connected neural network is trained to get the variant-level features, which are used for the retrieval of oracle character images. Compared to the traditional methods and the DNN-based methods, this method achieves the optimal results on the data set of oracle character images.</description><identifier>ISSN: 1819-656X</identifier><identifier>EISSN: 1819-9224</identifier><language>eng</language><publisher>Hong Kong: International Association of Engineers</publisher><subject>Algorithms ; Artificial neural networks ; Clustering ; Datasets ; Feature extraction ; Image management ; Image retrieval ; Neural networks</subject><ispartof>IAENG international journal of computer science, 2020-05, Vol.47 (2), p.199</ispartof><rights>Copyright International Association of Engineers May 29, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Liu, Guoying</creatorcontrib><creatorcontrib>Wang, Yangguang</creatorcontrib><title>Oracle Character Image Retrieval by Combining Deep Neural Networks and Clustering Technology</title><title>IAENG international journal of computer science</title><description>In this paper, we study the description and retrieval of oracle character images. A great challenge is that there is a big difference between the variants of the same oracle character in character patterns, bringing deep negative impact on the retrieval of oracle character images. To solve this problem, in this paper, an image retrieval method is proposed by combining deep neural networks (DNN) and clustering technology. Firstly, for making full use of the powerful image representation ability of DNN, the deep convolutional neural network is used to extract character-level image features. Then, in order to solve the problem of retrieving variants of oracle characters, the Kmeans++ clustering algorithm is used to divide the oracle character dataset into different subsets of variants. Finally, based on the newly divided data set, a fully connected neural network is trained to get the variant-level features, which are used for the retrieval of oracle character images. Compared to the traditional methods and the DNN-based methods, this method achieves the optimal results on the data set of oracle character images.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Clustering</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Image management</subject><subject>Image retrieval</subject><subject>Neural networks</subject><issn>1819-656X</issn><issn>1819-9224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotjVtLwzAYhoMoOOb-Q8DrQvMlaZJLqafB2EB64YUw0vRrV-2amrTK_r0d7up94D1dkQXTzCQGQFxfOJPZ-y1ZxdiWqRCKay35gnzsgnUd0vxgZxgx0PXRNkjfcAwt_tiOliea-2PZ9m3f0EfEgW5xCrOxxfHXh69IbV_RvJvi3D5nCnSH3ne-Od2Rm9p2EVcXXZLi-anIX5PN7mWdP2ySwegxUVJpw12qIOOiSpUTlTFSuNpoo0vGQesqcylIARyYcrrWgAzSGlCUwC1fkvv_2SH47wnjuP_0U-jnxz2IVGkmATj_A6R_T6o</recordid><startdate>20200529</startdate><enddate>20200529</enddate><creator>Liu, Guoying</creator><creator>Wang, Yangguang</creator><general>International Association of Engineers</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200529</creationdate><title>Oracle Character Image Retrieval by Combining Deep Neural Networks and Clustering Technology</title><author>Liu, Guoying ; Wang, Yangguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p98t-757893c072634d07c4d9954cf9898b13288d6c025423217c8f82e120f2e4b23a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Clustering</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Image management</topic><topic>Image retrieval</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Guoying</creatorcontrib><creatorcontrib>Wang, Yangguang</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IAENG international journal of computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Guoying</au><au>Wang, Yangguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oracle Character Image Retrieval by Combining Deep Neural Networks and Clustering Technology</atitle><jtitle>IAENG international journal of computer science</jtitle><date>2020-05-29</date><risdate>2020</risdate><volume>47</volume><issue>2</issue><spage>199</spage><pages>199-</pages><issn>1819-656X</issn><eissn>1819-9224</eissn><abstract>In this paper, we study the description and retrieval of oracle character images. A great challenge is that there is a big difference between the variants of the same oracle character in character patterns, bringing deep negative impact on the retrieval of oracle character images. To solve this problem, in this paper, an image retrieval method is proposed by combining deep neural networks (DNN) and clustering technology. Firstly, for making full use of the powerful image representation ability of DNN, the deep convolutional neural network is used to extract character-level image features. Then, in order to solve the problem of retrieving variants of oracle characters, the Kmeans++ clustering algorithm is used to divide the oracle character dataset into different subsets of variants. Finally, based on the newly divided data set, a fully connected neural network is trained to get the variant-level features, which are used for the retrieval of oracle character images. Compared to the traditional methods and the DNN-based methods, this method achieves the optimal results on the data set of oracle character images.</abstract><cop>Hong Kong</cop><pub>International Association of Engineers</pub></addata></record>
fulltext fulltext
identifier ISSN: 1819-656X
ispartof IAENG international journal of computer science, 2020-05, Vol.47 (2), p.199
issn 1819-656X
1819-9224
language eng
recordid cdi_proquest_journals_2407815223
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Artificial neural networks
Clustering
Datasets
Feature extraction
Image management
Image retrieval
Neural networks
title Oracle Character Image Retrieval by Combining Deep Neural Networks and Clustering Technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oracle%20Character%20Image%20Retrieval%20by%20Combining%20Deep%20Neural%20Networks%20and%20Clustering%20Technology&rft.jtitle=IAENG%20international%20journal%20of%20computer%20science&rft.au=Liu,%20Guoying&rft.date=2020-05-29&rft.volume=47&rft.issue=2&rft.spage=199&rft.pages=199-&rft.issn=1819-656X&rft.eissn=1819-9224&rft_id=info:doi/&rft_dat=%3Cproquest%3E2407815223%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407815223&rft_id=info:pmid/&rfr_iscdi=true