Super-Exponential Rate of Convergence of the Cayley Transform Method for an Abstract Differential Equation
A boundary-value problem (BVP) for a second-order abstract differential equation with an operator coefficient in a Hilbert space is investigated. The exact solution is presented as an infinite series by means of the Cayley transform of the operator coefficient A and the polynomials of Meixner type i...
Gespeichert in:
Veröffentlicht in: | Cybernetics and systems analysis 2020-05, Vol.56 (3), p.492-503 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A boundary-value problem (BVP) for a second-order abstract differential equation with an operator coefficient in a Hilbert space is investigated. The exact solution is presented as an infinite series by means of the Cayley transform of the operator coefficient A and the polynomials of Meixner type in the independent variable x. The approximate solution is given by the truncated sum of the series with N addends. The error estimates (with the weighted function) depending not only on the discretization parameter N but also on the distance of the argument x to the boundary points of the segment are proved. The algorithm has a super-exponential rate of convergence. |
---|---|
ISSN: | 1060-0396 1573-8337 |
DOI: | 10.1007/s10559-020-00265-2 |