2D Si3N as a Promising Anode Material for Li/Na-Ion Batteries from First-Principles Study

The development of high-efficiency anode materials with large capacity, high stability and fast diffusion rates is a key requirement for rechargeable Li-ion and Na-ion batteries (LIBs/NIBs). In this work, the adsorption and diffusion of Li and Na atoms on two-dimensional (2D) Si 3 N materials is stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2020-07, Vol.49 (7), p.4180-4185
Hauptverfasser: Li, Hui, Hou, Jianhua, Jiang, Dayong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4185
container_issue 7
container_start_page 4180
container_title Journal of electronic materials
container_volume 49
creator Li, Hui
Hou, Jianhua
Jiang, Dayong
description The development of high-efficiency anode materials with large capacity, high stability and fast diffusion rates is a key requirement for rechargeable Li-ion and Na-ion batteries (LIBs/NIBs). In this work, the adsorption and diffusion of Li and Na atoms on two-dimensional (2D) Si 3 N materials is studied using first-principles calculations. The Si 3 N monolayers have large adsorption energies (2.74 eV for Li and 2.17 eV for Na) and a high theoretical capacity (1772.0 mAh/g for Li and 859.6 mAh/g for Na). Moreover, the low diffusion barriers (0.45 and 0.24 eV) for Li and Na atoms indicate that Si 3 N has an excellent high charge/discharge capability. In addition, molecular dynamics simulations showed that the structure of the 2D Si 3 N monolayer with adsorption of 32 Li/Na atoms has a very small change at 400 K due to the large adsorption energies for Li/Na. Owing to its good features, the Si 3 N monolayer is a highly promising anode material for energy storage devices.
doi_str_mv 10.1007/s11664-020-08115-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407711677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407711677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-680fadaf5cbfd5f50e95e4cec9228458d14a96b680646223beaa02d0f3db47433</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdezNc2aW9VEt1Fqogq5CZiYpKe1MTaaL_ntTR3Dn6sLhfOfCh9A1hVsKkI0ipUoJAgwI5JRKUpygAZWCE5qrj1M0AK4okYzLc3QR4xqASprTAfpkD3jp-RybiA1ehHbro29WeNy0tcUvprPBmw12bcAzP5obMm0bfGe6Y24jdgnAEx9iRxbBN5XfbVK67Pb14RKdObOJ9ur3DtH75PHt_pnMXp-m9-MZqbjMO6JycKY2Tlalq6WTYAtpRWWrgrFcyLymwhSqTDUlFGO8tMYAq8HxuhSZ4HyIbvrdXWi_9jZ2et3uQ5NeaiYgy5KZLEst1req0MYYrNO74LcmHDQFfVSoe4U6KdQ_CnWRIN5DMZWblQ1_0_9Q35-kcpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407711677</pqid></control><display><type>article</type><title>2D Si3N as a Promising Anode Material for Li/Na-Ion Batteries from First-Principles Study</title><source>SpringerLink Journals</source><creator>Li, Hui ; Hou, Jianhua ; Jiang, Dayong</creator><creatorcontrib>Li, Hui ; Hou, Jianhua ; Jiang, Dayong</creatorcontrib><description>The development of high-efficiency anode materials with large capacity, high stability and fast diffusion rates is a key requirement for rechargeable Li-ion and Na-ion batteries (LIBs/NIBs). In this work, the adsorption and diffusion of Li and Na atoms on two-dimensional (2D) Si 3 N materials is studied using first-principles calculations. The Si 3 N monolayers have large adsorption energies (2.74 eV for Li and 2.17 eV for Na) and a high theoretical capacity (1772.0 mAh/g for Li and 859.6 mAh/g for Na). Moreover, the low diffusion barriers (0.45 and 0.24 eV) for Li and Na atoms indicate that Si 3 N has an excellent high charge/discharge capability. In addition, molecular dynamics simulations showed that the structure of the 2D Si 3 N monolayer with adsorption of 32 Li/Na atoms has a very small change at 400 K due to the large adsorption energies for Li/Na. Owing to its good features, the Si 3 N monolayer is a highly promising anode material for energy storage devices.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-020-08115-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adsorption ; Anodes ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Diffusion barriers ; Diffusion rate ; Electrode materials ; Electronics and Microelectronics ; Energy storage ; First principles ; Instrumentation ; Lithium ions ; Materials Science ; Molecular dynamics ; Molecular structure ; Monolayers ; Optical and Electronic Materials ; Rechargeable batteries ; Sodium ; Sodium-ion batteries ; Solid State Physics</subject><ispartof>Journal of electronic materials, 2020-07, Vol.49 (7), p.4180-4185</ispartof><rights>The Minerals, Metals &amp; Materials Society 2020</rights><rights>The Minerals, Metals &amp; Materials Society 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-680fadaf5cbfd5f50e95e4cec9228458d14a96b680646223beaa02d0f3db47433</citedby><cites>FETCH-LOGICAL-c358t-680fadaf5cbfd5f50e95e4cec9228458d14a96b680646223beaa02d0f3db47433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-020-08115-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-020-08115-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Hou, Jianhua</creatorcontrib><creatorcontrib>Jiang, Dayong</creatorcontrib><title>2D Si3N as a Promising Anode Material for Li/Na-Ion Batteries from First-Principles Study</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>The development of high-efficiency anode materials with large capacity, high stability and fast diffusion rates is a key requirement for rechargeable Li-ion and Na-ion batteries (LIBs/NIBs). In this work, the adsorption and diffusion of Li and Na atoms on two-dimensional (2D) Si 3 N materials is studied using first-principles calculations. The Si 3 N monolayers have large adsorption energies (2.74 eV for Li and 2.17 eV for Na) and a high theoretical capacity (1772.0 mAh/g for Li and 859.6 mAh/g for Na). Moreover, the low diffusion barriers (0.45 and 0.24 eV) for Li and Na atoms indicate that Si 3 N has an excellent high charge/discharge capability. In addition, molecular dynamics simulations showed that the structure of the 2D Si 3 N monolayer with adsorption of 32 Li/Na atoms has a very small change at 400 K due to the large adsorption energies for Li/Na. Owing to its good features, the Si 3 N monolayer is a highly promising anode material for energy storage devices.</description><subject>Adsorption</subject><subject>Anodes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Diffusion barriers</subject><subject>Diffusion rate</subject><subject>Electrode materials</subject><subject>Electronics and Microelectronics</subject><subject>Energy storage</subject><subject>First principles</subject><subject>Instrumentation</subject><subject>Lithium ions</subject><subject>Materials Science</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>Monolayers</subject><subject>Optical and Electronic Materials</subject><subject>Rechargeable batteries</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Solid State Physics</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdezNc2aW9VEt1Fqogq5CZiYpKe1MTaaL_ntTR3Dn6sLhfOfCh9A1hVsKkI0ipUoJAgwI5JRKUpygAZWCE5qrj1M0AK4okYzLc3QR4xqASprTAfpkD3jp-RybiA1ehHbro29WeNy0tcUvprPBmw12bcAzP5obMm0bfGe6Y24jdgnAEx9iRxbBN5XfbVK67Pb14RKdObOJ9ur3DtH75PHt_pnMXp-m9-MZqbjMO6JycKY2Tlalq6WTYAtpRWWrgrFcyLymwhSqTDUlFGO8tMYAq8HxuhSZ4HyIbvrdXWi_9jZ2et3uQ5NeaiYgy5KZLEst1req0MYYrNO74LcmHDQFfVSoe4U6KdQ_CnWRIN5DMZWblQ1_0_9Q35-kcpA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Li, Hui</creator><creator>Hou, Jianhua</creator><creator>Jiang, Dayong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20200701</creationdate><title>2D Si3N as a Promising Anode Material for Li/Na-Ion Batteries from First-Principles Study</title><author>Li, Hui ; Hou, Jianhua ; Jiang, Dayong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-680fadaf5cbfd5f50e95e4cec9228458d14a96b680646223beaa02d0f3db47433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Anodes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Diffusion barriers</topic><topic>Diffusion rate</topic><topic>Electrode materials</topic><topic>Electronics and Microelectronics</topic><topic>Energy storage</topic><topic>First principles</topic><topic>Instrumentation</topic><topic>Lithium ions</topic><topic>Materials Science</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>Monolayers</topic><topic>Optical and Electronic Materials</topic><topic>Rechargeable batteries</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Hou, Jianhua</creatorcontrib><creatorcontrib>Jiang, Dayong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hui</au><au>Hou, Jianhua</au><au>Jiang, Dayong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2D Si3N as a Promising Anode Material for Li/Na-Ion Batteries from First-Principles Study</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>49</volume><issue>7</issue><spage>4180</spage><epage>4185</epage><pages>4180-4185</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>The development of high-efficiency anode materials with large capacity, high stability and fast diffusion rates is a key requirement for rechargeable Li-ion and Na-ion batteries (LIBs/NIBs). In this work, the adsorption and diffusion of Li and Na atoms on two-dimensional (2D) Si 3 N materials is studied using first-principles calculations. The Si 3 N monolayers have large adsorption energies (2.74 eV for Li and 2.17 eV for Na) and a high theoretical capacity (1772.0 mAh/g for Li and 859.6 mAh/g for Na). Moreover, the low diffusion barriers (0.45 and 0.24 eV) for Li and Na atoms indicate that Si 3 N has an excellent high charge/discharge capability. In addition, molecular dynamics simulations showed that the structure of the 2D Si 3 N monolayer with adsorption of 32 Li/Na atoms has a very small change at 400 K due to the large adsorption energies for Li/Na. Owing to its good features, the Si 3 N monolayer is a highly promising anode material for energy storage devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-020-08115-9</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2020-07, Vol.49 (7), p.4180-4185
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2407711677
source SpringerLink Journals
subjects Adsorption
Anodes
Characterization and Evaluation of Materials
Chemistry and Materials Science
Diffusion barriers
Diffusion rate
Electrode materials
Electronics and Microelectronics
Energy storage
First principles
Instrumentation
Lithium ions
Materials Science
Molecular dynamics
Molecular structure
Monolayers
Optical and Electronic Materials
Rechargeable batteries
Sodium
Sodium-ion batteries
Solid State Physics
title 2D Si3N as a Promising Anode Material for Li/Na-Ion Batteries from First-Principles Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2D%20Si3N%20as%20a%20Promising%20Anode%20Material%20for%20Li/Na-Ion%20Batteries%20from%20First-Principles%20Study&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Li,%20Hui&rft.date=2020-07-01&rft.volume=49&rft.issue=7&rft.spage=4180&rft.epage=4185&rft.pages=4180-4185&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-020-08115-9&rft_dat=%3Cproquest_cross%3E2407711677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407711677&rft_id=info:pmid/&rfr_iscdi=true