Bilinear form, soliton, breather, lump and hybrid solutions for a (2+1)-dimensional Sawada–Kotera equation
In this paper, we investigate a ( 2 + 1 )-dimensional Sawada–Kotera (SK) equation for the atmosphere, rivers, lakes, oceans, as well as the conformal field and two-dimensional quantum gravity gauge field. Bilinear form and N -soliton solutions, which are different from those in the existing literatu...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2020-05, Vol.100 (3), p.2729-2738 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2738 |
---|---|
container_issue | 3 |
container_start_page | 2729 |
container_title | Nonlinear dynamics |
container_volume | 100 |
creator | Li, Liu-Qing Gao, Yi-Tian Hu, Lei Jia, Ting-Ting Ding, Cui-Cui Feng, Yu-Jie |
description | In this paper, we investigate a (
2
+
1
)-dimensional Sawada–Kotera (SK) equation for the atmosphere, rivers, lakes, oceans, as well as the conformal field and two-dimensional quantum gravity gauge field. Bilinear form and
N
-soliton solutions, which are different from those in the existing literatures, are derived, where
N
is a positive integer. The higher-order breather, lump and hybrid solutions for the (
2
+
1
)-dimensional SK equation are also constructed based on the
N
-soliton solutions. Three kinds of the first-order breathers are obtained, and the higher-order breathers are constructed. The higher-order lump solutions are also derived via the long-wave limit method. Hybrid solutions composed of the solitons, breathers and lumps are worked out, and interaction between the waves is discussed graphically. Finally, similar solutions for a generalized form of the (
2
+
1
)-dimensional SK equation are given. |
doi_str_mv | 10.1007/s11071-020-05600-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407711126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407711126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1c082822d162c0e97dd36150b32d1aad1cd627247eb3f4b16fd7ba0ec54cfbbc3</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gKuAG8WJ3pv-ZLrUwT8ccKHC7ELapE6HTjOTtEh3voNv6JPYWsGdqwuH7ztcDiHHCBcIIC49IghkwIFBFAOwdoeMMBIB43Gy2CUjSHjIIIHFPjnwfgUAAYfpiJTXRVlURjmaW7eeUG_LorbVhKbOqHpp3ISWzXpDVaXpsk1doXukqQtb-V6hip7yczxjulibynexKumzeldafX18PtraOEXNtlG9cUj2clV6c_R7x-T19uZlds_mT3cPs6s5ywJMaoYZTPmUc40xz8AkQusgxgjSoIuU0pjpmAseCpMGeZhinGuRKjBZFGZ5mmbBmJwMvRtnt43xtVzZxnWfeclDEAIRedxRfKAyZ713JpcbV6yVayWC7FeVw6qyW1X-rCrbTgoGyXdw9WbcX_U_1jfTFHxl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407711126</pqid></control><display><type>article</type><title>Bilinear form, soliton, breather, lump and hybrid solutions for a (2+1)-dimensional Sawada–Kotera equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Liu-Qing ; Gao, Yi-Tian ; Hu, Lei ; Jia, Ting-Ting ; Ding, Cui-Cui ; Feng, Yu-Jie</creator><creatorcontrib>Li, Liu-Qing ; Gao, Yi-Tian ; Hu, Lei ; Jia, Ting-Ting ; Ding, Cui-Cui ; Feng, Yu-Jie</creatorcontrib><description>In this paper, we investigate a (
2
+
1
)-dimensional Sawada–Kotera (SK) equation for the atmosphere, rivers, lakes, oceans, as well as the conformal field and two-dimensional quantum gravity gauge field. Bilinear form and
N
-soliton solutions, which are different from those in the existing literatures, are derived, where
N
is a positive integer. The higher-order breather, lump and hybrid solutions for the (
2
+
1
)-dimensional SK equation are also constructed based on the
N
-soliton solutions. Three kinds of the first-order breathers are obtained, and the higher-order breathers are constructed. The higher-order lump solutions are also derived via the long-wave limit method. Hybrid solutions composed of the solitons, breathers and lumps are worked out, and interaction between the waves is discussed graphically. Finally, similar solutions for a generalized form of the (
2
+
1
)-dimensional SK equation are given.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-020-05600-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Breathers ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Lakes ; Mechanical Engineering ; Oceans ; Original Paper ; Quantum gravity ; Solitary waves ; Vibration</subject><ispartof>Nonlinear dynamics, 2020-05, Vol.100 (3), p.2729-2738</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1c082822d162c0e97dd36150b32d1aad1cd627247eb3f4b16fd7ba0ec54cfbbc3</citedby><cites>FETCH-LOGICAL-c319t-1c082822d162c0e97dd36150b32d1aad1cd627247eb3f4b16fd7ba0ec54cfbbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-020-05600-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-020-05600-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Liu-Qing</creatorcontrib><creatorcontrib>Gao, Yi-Tian</creatorcontrib><creatorcontrib>Hu, Lei</creatorcontrib><creatorcontrib>Jia, Ting-Ting</creatorcontrib><creatorcontrib>Ding, Cui-Cui</creatorcontrib><creatorcontrib>Feng, Yu-Jie</creatorcontrib><title>Bilinear form, soliton, breather, lump and hybrid solutions for a (2+1)-dimensional Sawada–Kotera equation</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, we investigate a (
2
+
1
)-dimensional Sawada–Kotera (SK) equation for the atmosphere, rivers, lakes, oceans, as well as the conformal field and two-dimensional quantum gravity gauge field. Bilinear form and
N
-soliton solutions, which are different from those in the existing literatures, are derived, where
N
is a positive integer. The higher-order breather, lump and hybrid solutions for the (
2
+
1
)-dimensional SK equation are also constructed based on the
N
-soliton solutions. Three kinds of the first-order breathers are obtained, and the higher-order breathers are constructed. The higher-order lump solutions are also derived via the long-wave limit method. Hybrid solutions composed of the solitons, breathers and lumps are worked out, and interaction between the waves is discussed graphically. Finally, similar solutions for a generalized form of the (
2
+
1
)-dimensional SK equation are given.</description><subject>Automotive Engineering</subject><subject>Breathers</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Lakes</subject><subject>Mechanical Engineering</subject><subject>Oceans</subject><subject>Original Paper</subject><subject>Quantum gravity</subject><subject>Solitary waves</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1KxDAUhYMoOI6-gKuAG8WJ3pv-ZLrUwT8ccKHC7ELapE6HTjOTtEh3voNv6JPYWsGdqwuH7ztcDiHHCBcIIC49IghkwIFBFAOwdoeMMBIB43Gy2CUjSHjIIIHFPjnwfgUAAYfpiJTXRVlURjmaW7eeUG_LorbVhKbOqHpp3ISWzXpDVaXpsk1doXukqQtb-V6hip7yczxjulibynexKumzeldafX18PtraOEXNtlG9cUj2clV6c_R7x-T19uZlds_mT3cPs6s5ywJMaoYZTPmUc40xz8AkQusgxgjSoIuU0pjpmAseCpMGeZhinGuRKjBZFGZ5mmbBmJwMvRtnt43xtVzZxnWfeclDEAIRedxRfKAyZ713JpcbV6yVayWC7FeVw6qyW1X-rCrbTgoGyXdw9WbcX_U_1jfTFHxl</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Li, Liu-Qing</creator><creator>Gao, Yi-Tian</creator><creator>Hu, Lei</creator><creator>Jia, Ting-Ting</creator><creator>Ding, Cui-Cui</creator><creator>Feng, Yu-Jie</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200501</creationdate><title>Bilinear form, soliton, breather, lump and hybrid solutions for a (2+1)-dimensional Sawada–Kotera equation</title><author>Li, Liu-Qing ; Gao, Yi-Tian ; Hu, Lei ; Jia, Ting-Ting ; Ding, Cui-Cui ; Feng, Yu-Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1c082822d162c0e97dd36150b32d1aad1cd627247eb3f4b16fd7ba0ec54cfbbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automotive Engineering</topic><topic>Breathers</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Lakes</topic><topic>Mechanical Engineering</topic><topic>Oceans</topic><topic>Original Paper</topic><topic>Quantum gravity</topic><topic>Solitary waves</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Liu-Qing</creatorcontrib><creatorcontrib>Gao, Yi-Tian</creatorcontrib><creatorcontrib>Hu, Lei</creatorcontrib><creatorcontrib>Jia, Ting-Ting</creatorcontrib><creatorcontrib>Ding, Cui-Cui</creatorcontrib><creatorcontrib>Feng, Yu-Jie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Liu-Qing</au><au>Gao, Yi-Tian</au><au>Hu, Lei</au><au>Jia, Ting-Ting</au><au>Ding, Cui-Cui</au><au>Feng, Yu-Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bilinear form, soliton, breather, lump and hybrid solutions for a (2+1)-dimensional Sawada–Kotera equation</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>100</volume><issue>3</issue><spage>2729</spage><epage>2738</epage><pages>2729-2738</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, we investigate a (
2
+
1
)-dimensional Sawada–Kotera (SK) equation for the atmosphere, rivers, lakes, oceans, as well as the conformal field and two-dimensional quantum gravity gauge field. Bilinear form and
N
-soliton solutions, which are different from those in the existing literatures, are derived, where
N
is a positive integer. The higher-order breather, lump and hybrid solutions for the (
2
+
1
)-dimensional SK equation are also constructed based on the
N
-soliton solutions. Three kinds of the first-order breathers are obtained, and the higher-order breathers are constructed. The higher-order lump solutions are also derived via the long-wave limit method. Hybrid solutions composed of the solitons, breathers and lumps are worked out, and interaction between the waves is discussed graphically. Finally, similar solutions for a generalized form of the (
2
+
1
)-dimensional SK equation are given.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-020-05600-y</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2020-05, Vol.100 (3), p.2729-2738 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2407711126 |
source | SpringerLink Journals - AutoHoldings |
subjects | Automotive Engineering Breathers Classical Mechanics Control Dynamical Systems Engineering Lakes Mechanical Engineering Oceans Original Paper Quantum gravity Solitary waves Vibration |
title | Bilinear form, soliton, breather, lump and hybrid solutions for a (2+1)-dimensional Sawada–Kotera equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A03%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bilinear%20form,%20soliton,%20breather,%20lump%20and%20hybrid%20solutions%20for%20a%20(2+1)-dimensional%20Sawada%E2%80%93Kotera%20equation&rft.jtitle=Nonlinear%20dynamics&rft.au=Li,%20Liu-Qing&rft.date=2020-05-01&rft.volume=100&rft.issue=3&rft.spage=2729&rft.epage=2738&rft.pages=2729-2738&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-020-05600-y&rft_dat=%3Cproquest_cross%3E2407711126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407711126&rft_id=info:pmid/&rfr_iscdi=true |