Bilinear form, soliton, breather, lump and hybrid solutions for a (2+1)-dimensional Sawada–Kotera equation

In this paper, we investigate a ( 2 + 1 )-dimensional Sawada–Kotera (SK) equation for the atmosphere, rivers, lakes, oceans, as well as the conformal field and two-dimensional quantum gravity gauge field. Bilinear form and N -soliton solutions, which are different from those in the existing literatu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2020-05, Vol.100 (3), p.2729-2738
Hauptverfasser: Li, Liu-Qing, Gao, Yi-Tian, Hu, Lei, Jia, Ting-Ting, Ding, Cui-Cui, Feng, Yu-Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2738
container_issue 3
container_start_page 2729
container_title Nonlinear dynamics
container_volume 100
creator Li, Liu-Qing
Gao, Yi-Tian
Hu, Lei
Jia, Ting-Ting
Ding, Cui-Cui
Feng, Yu-Jie
description In this paper, we investigate a ( 2 + 1 )-dimensional Sawada–Kotera (SK) equation for the atmosphere, rivers, lakes, oceans, as well as the conformal field and two-dimensional quantum gravity gauge field. Bilinear form and N -soliton solutions, which are different from those in the existing literatures, are derived, where N is a positive integer. The higher-order breather, lump and hybrid solutions for the ( 2 + 1 )-dimensional SK equation are also constructed based on the N -soliton solutions. Three kinds of the first-order breathers are obtained, and the higher-order breathers are constructed. The higher-order lump solutions are also derived via the long-wave limit method. Hybrid solutions composed of the solitons, breathers and lumps are worked out, and interaction between the waves is discussed graphically. Finally, similar solutions for a generalized form of the ( 2 + 1 )-dimensional SK equation are given.
doi_str_mv 10.1007/s11071-020-05600-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407711126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407711126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1c082822d162c0e97dd36150b32d1aad1cd627247eb3f4b16fd7ba0ec54cfbbc3</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gKuAG8WJ3pv-ZLrUwT8ccKHC7ELapE6HTjOTtEh3voNv6JPYWsGdqwuH7ztcDiHHCBcIIC49IghkwIFBFAOwdoeMMBIB43Gy2CUjSHjIIIHFPjnwfgUAAYfpiJTXRVlURjmaW7eeUG_LorbVhKbOqHpp3ISWzXpDVaXpsk1doXukqQtb-V6hip7yczxjulibynexKumzeldafX18PtraOEXNtlG9cUj2clV6c_R7x-T19uZlds_mT3cPs6s5ywJMaoYZTPmUc40xz8AkQusgxgjSoIuU0pjpmAseCpMGeZhinGuRKjBZFGZ5mmbBmJwMvRtnt43xtVzZxnWfeclDEAIRedxRfKAyZ713JpcbV6yVayWC7FeVw6qyW1X-rCrbTgoGyXdw9WbcX_U_1jfTFHxl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407711126</pqid></control><display><type>article</type><title>Bilinear form, soliton, breather, lump and hybrid solutions for a (2+1)-dimensional Sawada–Kotera equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Liu-Qing ; Gao, Yi-Tian ; Hu, Lei ; Jia, Ting-Ting ; Ding, Cui-Cui ; Feng, Yu-Jie</creator><creatorcontrib>Li, Liu-Qing ; Gao, Yi-Tian ; Hu, Lei ; Jia, Ting-Ting ; Ding, Cui-Cui ; Feng, Yu-Jie</creatorcontrib><description>In this paper, we investigate a ( 2 + 1 )-dimensional Sawada–Kotera (SK) equation for the atmosphere, rivers, lakes, oceans, as well as the conformal field and two-dimensional quantum gravity gauge field. Bilinear form and N -soliton solutions, which are different from those in the existing literatures, are derived, where N is a positive integer. The higher-order breather, lump and hybrid solutions for the ( 2 + 1 )-dimensional SK equation are also constructed based on the N -soliton solutions. Three kinds of the first-order breathers are obtained, and the higher-order breathers are constructed. The higher-order lump solutions are also derived via the long-wave limit method. Hybrid solutions composed of the solitons, breathers and lumps are worked out, and interaction between the waves is discussed graphically. Finally, similar solutions for a generalized form of the ( 2 + 1 )-dimensional SK equation are given.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-020-05600-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Breathers ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Lakes ; Mechanical Engineering ; Oceans ; Original Paper ; Quantum gravity ; Solitary waves ; Vibration</subject><ispartof>Nonlinear dynamics, 2020-05, Vol.100 (3), p.2729-2738</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1c082822d162c0e97dd36150b32d1aad1cd627247eb3f4b16fd7ba0ec54cfbbc3</citedby><cites>FETCH-LOGICAL-c319t-1c082822d162c0e97dd36150b32d1aad1cd627247eb3f4b16fd7ba0ec54cfbbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-020-05600-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-020-05600-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Liu-Qing</creatorcontrib><creatorcontrib>Gao, Yi-Tian</creatorcontrib><creatorcontrib>Hu, Lei</creatorcontrib><creatorcontrib>Jia, Ting-Ting</creatorcontrib><creatorcontrib>Ding, Cui-Cui</creatorcontrib><creatorcontrib>Feng, Yu-Jie</creatorcontrib><title>Bilinear form, soliton, breather, lump and hybrid solutions for a (2+1)-dimensional Sawada–Kotera equation</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, we investigate a ( 2 + 1 )-dimensional Sawada–Kotera (SK) equation for the atmosphere, rivers, lakes, oceans, as well as the conformal field and two-dimensional quantum gravity gauge field. Bilinear form and N -soliton solutions, which are different from those in the existing literatures, are derived, where N is a positive integer. The higher-order breather, lump and hybrid solutions for the ( 2 + 1 )-dimensional SK equation are also constructed based on the N -soliton solutions. Three kinds of the first-order breathers are obtained, and the higher-order breathers are constructed. The higher-order lump solutions are also derived via the long-wave limit method. Hybrid solutions composed of the solitons, breathers and lumps are worked out, and interaction between the waves is discussed graphically. Finally, similar solutions for a generalized form of the ( 2 + 1 )-dimensional SK equation are given.</description><subject>Automotive Engineering</subject><subject>Breathers</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Lakes</subject><subject>Mechanical Engineering</subject><subject>Oceans</subject><subject>Original Paper</subject><subject>Quantum gravity</subject><subject>Solitary waves</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1KxDAUhYMoOI6-gKuAG8WJ3pv-ZLrUwT8ccKHC7ELapE6HTjOTtEh3voNv6JPYWsGdqwuH7ztcDiHHCBcIIC49IghkwIFBFAOwdoeMMBIB43Gy2CUjSHjIIIHFPjnwfgUAAYfpiJTXRVlURjmaW7eeUG_LorbVhKbOqHpp3ISWzXpDVaXpsk1doXukqQtb-V6hip7yczxjulibynexKumzeldafX18PtraOEXNtlG9cUj2clV6c_R7x-T19uZlds_mT3cPs6s5ywJMaoYZTPmUc40xz8AkQusgxgjSoIuU0pjpmAseCpMGeZhinGuRKjBZFGZ5mmbBmJwMvRtnt43xtVzZxnWfeclDEAIRedxRfKAyZ713JpcbV6yVayWC7FeVw6qyW1X-rCrbTgoGyXdw9WbcX_U_1jfTFHxl</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Li, Liu-Qing</creator><creator>Gao, Yi-Tian</creator><creator>Hu, Lei</creator><creator>Jia, Ting-Ting</creator><creator>Ding, Cui-Cui</creator><creator>Feng, Yu-Jie</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200501</creationdate><title>Bilinear form, soliton, breather, lump and hybrid solutions for a (2+1)-dimensional Sawada–Kotera equation</title><author>Li, Liu-Qing ; Gao, Yi-Tian ; Hu, Lei ; Jia, Ting-Ting ; Ding, Cui-Cui ; Feng, Yu-Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1c082822d162c0e97dd36150b32d1aad1cd627247eb3f4b16fd7ba0ec54cfbbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automotive Engineering</topic><topic>Breathers</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Lakes</topic><topic>Mechanical Engineering</topic><topic>Oceans</topic><topic>Original Paper</topic><topic>Quantum gravity</topic><topic>Solitary waves</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Liu-Qing</creatorcontrib><creatorcontrib>Gao, Yi-Tian</creatorcontrib><creatorcontrib>Hu, Lei</creatorcontrib><creatorcontrib>Jia, Ting-Ting</creatorcontrib><creatorcontrib>Ding, Cui-Cui</creatorcontrib><creatorcontrib>Feng, Yu-Jie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Liu-Qing</au><au>Gao, Yi-Tian</au><au>Hu, Lei</au><au>Jia, Ting-Ting</au><au>Ding, Cui-Cui</au><au>Feng, Yu-Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bilinear form, soliton, breather, lump and hybrid solutions for a (2+1)-dimensional Sawada–Kotera equation</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>100</volume><issue>3</issue><spage>2729</spage><epage>2738</epage><pages>2729-2738</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, we investigate a ( 2 + 1 )-dimensional Sawada–Kotera (SK) equation for the atmosphere, rivers, lakes, oceans, as well as the conformal field and two-dimensional quantum gravity gauge field. Bilinear form and N -soliton solutions, which are different from those in the existing literatures, are derived, where N is a positive integer. The higher-order breather, lump and hybrid solutions for the ( 2 + 1 )-dimensional SK equation are also constructed based on the N -soliton solutions. Three kinds of the first-order breathers are obtained, and the higher-order breathers are constructed. The higher-order lump solutions are also derived via the long-wave limit method. Hybrid solutions composed of the solitons, breathers and lumps are worked out, and interaction between the waves is discussed graphically. Finally, similar solutions for a generalized form of the ( 2 + 1 )-dimensional SK equation are given.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-020-05600-y</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2020-05, Vol.100 (3), p.2729-2738
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2407711126
source SpringerLink Journals - AutoHoldings
subjects Automotive Engineering
Breathers
Classical Mechanics
Control
Dynamical Systems
Engineering
Lakes
Mechanical Engineering
Oceans
Original Paper
Quantum gravity
Solitary waves
Vibration
title Bilinear form, soliton, breather, lump and hybrid solutions for a (2+1)-dimensional Sawada–Kotera equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A03%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bilinear%20form,%20soliton,%20breather,%20lump%20and%20hybrid%20solutions%20for%20a%20(2+1)-dimensional%20Sawada%E2%80%93Kotera%20equation&rft.jtitle=Nonlinear%20dynamics&rft.au=Li,%20Liu-Qing&rft.date=2020-05-01&rft.volume=100&rft.issue=3&rft.spage=2729&rft.epage=2738&rft.pages=2729-2738&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-020-05600-y&rft_dat=%3Cproquest_cross%3E2407711126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407711126&rft_id=info:pmid/&rfr_iscdi=true