Blind Fuzzy Adaptation Step Control for a Concurrent Neural Network Equalizer

Mobile communications, not infrequently, are disrupted by multipath propagation in the wireless channel. In this context, this paper proposes a new blind concurrent equalization approach that combines a Phase Transmittance Radial Basis Function Neural Network (PTRBFNN) and the classic Constant Modul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless communications and mobile computing 2019-01, Vol.2019 (2019), p.1-11
Hauptverfasser: Castro, Fernando C. C. De, Müller, Candice, Oliveira, Matheus S. De, Mayer, Kayol S., Castro, Maria C. F. De
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 2019
container_start_page 1
container_title Wireless communications and mobile computing
container_volume 2019
creator Castro, Fernando C. C. De
Müller, Candice
Oliveira, Matheus S. De
Mayer, Kayol S.
Castro, Maria C. F. De
description Mobile communications, not infrequently, are disrupted by multipath propagation in the wireless channel. In this context, this paper proposes a new blind concurrent equalization approach that combines a Phase Transmittance Radial Basis Function Neural Network (PTRBFNN) and the classic Constant Modulus Algorithm (CMA) in a concurrent architecture, with a Fuzzy Controller (FC) responsible for adapting the PTRBFNN and CMA step sizes. Differently from the Neural Network (NN) based equalizers present in literature, the proposed Fuzzy Controller Concurrent Neural Network Equalizer (FC-CNNE) is a completely self-taught concurrent architecture that does not need any training. The Fuzzy Controller inputs are based on the estimated mean squared error of the equalization process and on its variation in time. The proposed solution has been evaluated over standard multipath VHF/UHF channels defined by the International Telecommunication Union. Results show that the FC-CNNE is able to achieve lower residual steady-state MSE value and/or faster convergence rate and consequently lower Bit Error Rate (BER) when compared to Constant Modulus Algorithm-Phase Transmittance Radial Basis Function Neural Network (CMA-PTRBFNN) equalizer.
doi_str_mv 10.1155/2019/9082362
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407629786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407629786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-dec7d6ffe6eba4f9b8cdcd7092f2cbd4a1c0599d5001c23535421b442676db5b3</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs7pzbMUPGrdS9KkzXGOTYWpB_Vc0vzAztp0acrY_no7OvTo6fsefHgPvghdYrjDmLEJASwmAjJCOTlCI8woxBlP0-PfmYtTdNa2KwCgQPAIPd9XZa2jRbfbbaOplk2QoXR19BZME81cHbyrIut8JPeb6rw3dYheTOdl1UfYOP8VzdedrMqd8efoxMqqNReHHKOPxfx99hgvXx-eZtNlrCiHEGujUs2tNdwUMrGiyJRWOgVBLFGFTiRWwITQDAArQhllCcFFkhCecl2wgo7R9XC38W7dmTbkK9f5un-ZkwRSTkSa8V7dDkp517be2Lzx5bf02xxDvi8s3xeWHwrr-c3AP_tG5Kb8T18N2vTGWPmnCSYUA_0BB6x0Sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407629786</pqid></control><display><type>article</type><title>Blind Fuzzy Adaptation Step Control for a Concurrent Neural Network Equalizer</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Castro, Fernando C. C. De ; Müller, Candice ; Oliveira, Matheus S. De ; Mayer, Kayol S. ; Castro, Maria C. F. De</creator><contributor>García-Naya, José A.</contributor><creatorcontrib>Castro, Fernando C. C. De ; Müller, Candice ; Oliveira, Matheus S. De ; Mayer, Kayol S. ; Castro, Maria C. F. De ; García-Naya, José A.</creatorcontrib><description>Mobile communications, not infrequently, are disrupted by multipath propagation in the wireless channel. In this context, this paper proposes a new blind concurrent equalization approach that combines a Phase Transmittance Radial Basis Function Neural Network (PTRBFNN) and the classic Constant Modulus Algorithm (CMA) in a concurrent architecture, with a Fuzzy Controller (FC) responsible for adapting the PTRBFNN and CMA step sizes. Differently from the Neural Network (NN) based equalizers present in literature, the proposed Fuzzy Controller Concurrent Neural Network Equalizer (FC-CNNE) is a completely self-taught concurrent architecture that does not need any training. The Fuzzy Controller inputs are based on the estimated mean squared error of the equalization process and on its variation in time. The proposed solution has been evaluated over standard multipath VHF/UHF channels defined by the International Telecommunication Union. Results show that the FC-CNNE is able to achieve lower residual steady-state MSE value and/or faster convergence rate and consequently lower Bit Error Rate (BER) when compared to Constant Modulus Algorithm-Phase Transmittance Radial Basis Function Neural Network (CMA-PTRBFNN) equalizer.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2019/9082362</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adaptation ; Algorithms ; Architecture ; Artificial neural networks ; Bit error rate ; Control algorithms ; Controllers ; Equalization ; Equalizers ; Fuzzy control ; Fuzzy logic ; Mobile communication systems ; Neural networks ; Radial basis function ; Transmittance ; Wireless networks</subject><ispartof>Wireless communications and mobile computing, 2019-01, Vol.2019 (2019), p.1-11</ispartof><rights>Copyright © 2019 Kayol S. Mayer et al.</rights><rights>Copyright © 2019 Kayol S. Mayer et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-dec7d6ffe6eba4f9b8cdcd7092f2cbd4a1c0599d5001c23535421b442676db5b3</citedby><cites>FETCH-LOGICAL-c360t-dec7d6ffe6eba4f9b8cdcd7092f2cbd4a1c0599d5001c23535421b442676db5b3</cites><orcidid>0000-0002-7450-1129 ; 0000-0002-1344-2698 ; 0000-0002-8837-153X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>García-Naya, José A.</contributor><creatorcontrib>Castro, Fernando C. C. De</creatorcontrib><creatorcontrib>Müller, Candice</creatorcontrib><creatorcontrib>Oliveira, Matheus S. De</creatorcontrib><creatorcontrib>Mayer, Kayol S.</creatorcontrib><creatorcontrib>Castro, Maria C. F. De</creatorcontrib><title>Blind Fuzzy Adaptation Step Control for a Concurrent Neural Network Equalizer</title><title>Wireless communications and mobile computing</title><description>Mobile communications, not infrequently, are disrupted by multipath propagation in the wireless channel. In this context, this paper proposes a new blind concurrent equalization approach that combines a Phase Transmittance Radial Basis Function Neural Network (PTRBFNN) and the classic Constant Modulus Algorithm (CMA) in a concurrent architecture, with a Fuzzy Controller (FC) responsible for adapting the PTRBFNN and CMA step sizes. Differently from the Neural Network (NN) based equalizers present in literature, the proposed Fuzzy Controller Concurrent Neural Network Equalizer (FC-CNNE) is a completely self-taught concurrent architecture that does not need any training. The Fuzzy Controller inputs are based on the estimated mean squared error of the equalization process and on its variation in time. The proposed solution has been evaluated over standard multipath VHF/UHF channels defined by the International Telecommunication Union. Results show that the FC-CNNE is able to achieve lower residual steady-state MSE value and/or faster convergence rate and consequently lower Bit Error Rate (BER) when compared to Constant Modulus Algorithm-Phase Transmittance Radial Basis Function Neural Network (CMA-PTRBFNN) equalizer.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Architecture</subject><subject>Artificial neural networks</subject><subject>Bit error rate</subject><subject>Control algorithms</subject><subject>Controllers</subject><subject>Equalization</subject><subject>Equalizers</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Mobile communication systems</subject><subject>Neural networks</subject><subject>Radial basis function</subject><subject>Transmittance</subject><subject>Wireless networks</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0M9LwzAUB_AgCs7pzbMUPGrdS9KkzXGOTYWpB_Vc0vzAztp0acrY_no7OvTo6fsefHgPvghdYrjDmLEJASwmAjJCOTlCI8woxBlP0-PfmYtTdNa2KwCgQPAIPd9XZa2jRbfbbaOplk2QoXR19BZME81cHbyrIut8JPeb6rw3dYheTOdl1UfYOP8VzdedrMqd8efoxMqqNReHHKOPxfx99hgvXx-eZtNlrCiHEGujUs2tNdwUMrGiyJRWOgVBLFGFTiRWwITQDAArQhllCcFFkhCecl2wgo7R9XC38W7dmTbkK9f5un-ZkwRSTkSa8V7dDkp517be2Lzx5bf02xxDvi8s3xeWHwrr-c3AP_tG5Kb8T18N2vTGWPmnCSYUA_0BB6x0Sg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Castro, Fernando C. C. De</creator><creator>Müller, Candice</creator><creator>Oliveira, Matheus S. De</creator><creator>Mayer, Kayol S.</creator><creator>Castro, Maria C. F. De</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7450-1129</orcidid><orcidid>https://orcid.org/0000-0002-1344-2698</orcidid><orcidid>https://orcid.org/0000-0002-8837-153X</orcidid></search><sort><creationdate>20190101</creationdate><title>Blind Fuzzy Adaptation Step Control for a Concurrent Neural Network Equalizer</title><author>Castro, Fernando C. C. De ; Müller, Candice ; Oliveira, Matheus S. De ; Mayer, Kayol S. ; Castro, Maria C. F. De</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-dec7d6ffe6eba4f9b8cdcd7092f2cbd4a1c0599d5001c23535421b442676db5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Architecture</topic><topic>Artificial neural networks</topic><topic>Bit error rate</topic><topic>Control algorithms</topic><topic>Controllers</topic><topic>Equalization</topic><topic>Equalizers</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Mobile communication systems</topic><topic>Neural networks</topic><topic>Radial basis function</topic><topic>Transmittance</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro, Fernando C. C. De</creatorcontrib><creatorcontrib>Müller, Candice</creatorcontrib><creatorcontrib>Oliveira, Matheus S. De</creatorcontrib><creatorcontrib>Mayer, Kayol S.</creatorcontrib><creatorcontrib>Castro, Maria C. F. De</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro, Fernando C. C. De</au><au>Müller, Candice</au><au>Oliveira, Matheus S. De</au><au>Mayer, Kayol S.</au><au>Castro, Maria C. F. De</au><au>García-Naya, José A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blind Fuzzy Adaptation Step Control for a Concurrent Neural Network Equalizer</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>Mobile communications, not infrequently, are disrupted by multipath propagation in the wireless channel. In this context, this paper proposes a new blind concurrent equalization approach that combines a Phase Transmittance Radial Basis Function Neural Network (PTRBFNN) and the classic Constant Modulus Algorithm (CMA) in a concurrent architecture, with a Fuzzy Controller (FC) responsible for adapting the PTRBFNN and CMA step sizes. Differently from the Neural Network (NN) based equalizers present in literature, the proposed Fuzzy Controller Concurrent Neural Network Equalizer (FC-CNNE) is a completely self-taught concurrent architecture that does not need any training. The Fuzzy Controller inputs are based on the estimated mean squared error of the equalization process and on its variation in time. The proposed solution has been evaluated over standard multipath VHF/UHF channels defined by the International Telecommunication Union. Results show that the FC-CNNE is able to achieve lower residual steady-state MSE value and/or faster convergence rate and consequently lower Bit Error Rate (BER) when compared to Constant Modulus Algorithm-Phase Transmittance Radial Basis Function Neural Network (CMA-PTRBFNN) equalizer.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/9082362</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7450-1129</orcidid><orcidid>https://orcid.org/0000-0002-1344-2698</orcidid><orcidid>https://orcid.org/0000-0002-8837-153X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-8669
ispartof Wireless communications and mobile computing, 2019-01, Vol.2019 (2019), p.1-11
issn 1530-8669
1530-8677
language eng
recordid cdi_proquest_journals_2407629786
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Adaptation
Algorithms
Architecture
Artificial neural networks
Bit error rate
Control algorithms
Controllers
Equalization
Equalizers
Fuzzy control
Fuzzy logic
Mobile communication systems
Neural networks
Radial basis function
Transmittance
Wireless networks
title Blind Fuzzy Adaptation Step Control for a Concurrent Neural Network Equalizer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A21%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blind%20Fuzzy%20Adaptation%20Step%20Control%20for%20a%20Concurrent%20Neural%20Network%20Equalizer&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Castro,%20Fernando%20C.%20C.%20De&rft.date=2019-01-01&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2019/9082362&rft_dat=%3Cproquest_cross%3E2407629786%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407629786&rft_id=info:pmid/&rfr_iscdi=true