Big Data Analytics Embedded Smart City Architecture for Performance Enhancement through Real-Time Data Processing and Decision-Making

The concept of the smart city is widely favored, as it enhances the quality of life of urban citizens, involving multiple disciplines, that is, smart community, smart transportation, smart healthcare, smart parking, and many more. Continuous growth of the complex urban networks is significantly chal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless communications and mobile computing 2017-01, Vol.2017 (2017), p.1-12
Hauptverfasser: Nathali Silva, Bhagya, Han, Kijun, Khan, Murad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 2017
container_start_page 1
container_title Wireless communications and mobile computing
container_volume 2017
creator Nathali Silva, Bhagya
Han, Kijun
Khan, Murad
description The concept of the smart city is widely favored, as it enhances the quality of life of urban citizens, involving multiple disciplines, that is, smart community, smart transportation, smart healthcare, smart parking, and many more. Continuous growth of the complex urban networks is significantly challenged by real-time data processing and intelligent decision-making capabilities. Therefore, in this paper, we propose a smart city framework based on Big Data analytics. The proposed framework operates on three levels: (1) data generation and acquisition level collecting heterogeneous data related to city operations, (2) data management and processing level filtering, analyzing, and storing data to make decisions and events autonomously, and (3) application level initiating execution of the events corresponding to the received decisions. In order to validate the proposed architecture, we analyze a few major types of dataset based on the proposed three-level architecture. Further, we tested authentic datasets on Hadoop ecosystem to determine the threshold and the analysis shows that the proposed architecture offers useful insights into the community development authorities to improve the existing smart city architecture.
doi_str_mv 10.1155/2017/9429676
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407629587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407629587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-2cec96b99b573f38a42d49b6d3dfedb29a96b0ec5abf1fe130c074b67997436f3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRSMEEs8da2SJJYT6kdj1srTlIRWBeKwjxx43Lk1SbFeoH8B_kyoIlqzuaOboSnOS5JTgK0LyfEAxEQOZUckF30kOSM5wOuRC7P7OXO4nhyEsMMYMU3KQfF27OZqoqNCoUctNdDqgaV2CMWDQS618RGMXN2jkdeUi6Lj2gGzr0RP4LmrVaEDTptpmDU1EsfLtel6hZ1DL9NXV0Lc_-VZDCK6ZI9UYNAHtgmub9EG9d7vjZM-qZYCTnzxK3m6mr-O7dPZ4ez8ezVKdUR5TqkFLXkpZ5oJZNlQZNZksuWHGgimpVN0Vg85VaYkFwrDGIiu5kFJkjFt2lJz3vSvffqwhxGLRrn33eChohgWnMh-KjrrsKe3bEDzYYuVdp2JTEFxsRRdb0cWP6A6_6PHKNUZ9uv_os56GjgGr_miKOcsp-wbDIYh4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407629587</pqid></control><display><type>article</type><title>Big Data Analytics Embedded Smart City Architecture for Performance Enhancement through Real-Time Data Processing and Decision-Making</title><source>Wiley-Blackwell Open Access Titles</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Nathali Silva, Bhagya ; Han, Kijun ; Khan, Murad</creator><contributor>Lloret, Jaime</contributor><creatorcontrib>Nathali Silva, Bhagya ; Han, Kijun ; Khan, Murad ; Lloret, Jaime</creatorcontrib><description>The concept of the smart city is widely favored, as it enhances the quality of life of urban citizens, involving multiple disciplines, that is, smart community, smart transportation, smart healthcare, smart parking, and many more. Continuous growth of the complex urban networks is significantly challenged by real-time data processing and intelligent decision-making capabilities. Therefore, in this paper, we propose a smart city framework based on Big Data analytics. The proposed framework operates on three levels: (1) data generation and acquisition level collecting heterogeneous data related to city operations, (2) data management and processing level filtering, analyzing, and storing data to make decisions and events autonomously, and (3) application level initiating execution of the events corresponding to the received decisions. In order to validate the proposed architecture, we analyze a few major types of dataset based on the proposed three-level architecture. Further, we tested authentic datasets on Hadoop ecosystem to determine the threshold and the analysis shows that the proposed architecture offers useful insights into the community development authorities to improve the existing smart city architecture.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2017/9429676</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Architecture ; Big Data ; Communication ; Community development ; Data analysis ; Data collection ; Data management ; Data processing ; Datasets ; Decision analysis ; Decision making ; Energy consumption ; Interest groups ; Internet of Things ; Optimization techniques ; Performance enhancement ; Real time ; Researchers ; Smart cities ; Social research ; Surveillance ; Traffic congestion ; Wireless networks</subject><ispartof>Wireless communications and mobile computing, 2017-01, Vol.2017 (2017), p.1-12</ispartof><rights>Copyright © 2017 Bhagya Nathali Silva et al.</rights><rights>Copyright © 2017 Bhagya Nathali Silva et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-2cec96b99b573f38a42d49b6d3dfedb29a96b0ec5abf1fe130c074b67997436f3</citedby><cites>FETCH-LOGICAL-c426t-2cec96b99b573f38a42d49b6d3dfedb29a96b0ec5abf1fe130c074b67997436f3</cites><orcidid>0000-0002-3520-6194 ; 0000-0003-0061-0557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Lloret, Jaime</contributor><creatorcontrib>Nathali Silva, Bhagya</creatorcontrib><creatorcontrib>Han, Kijun</creatorcontrib><creatorcontrib>Khan, Murad</creatorcontrib><title>Big Data Analytics Embedded Smart City Architecture for Performance Enhancement through Real-Time Data Processing and Decision-Making</title><title>Wireless communications and mobile computing</title><description>The concept of the smart city is widely favored, as it enhances the quality of life of urban citizens, involving multiple disciplines, that is, smart community, smart transportation, smart healthcare, smart parking, and many more. Continuous growth of the complex urban networks is significantly challenged by real-time data processing and intelligent decision-making capabilities. Therefore, in this paper, we propose a smart city framework based on Big Data analytics. The proposed framework operates on three levels: (1) data generation and acquisition level collecting heterogeneous data related to city operations, (2) data management and processing level filtering, analyzing, and storing data to make decisions and events autonomously, and (3) application level initiating execution of the events corresponding to the received decisions. In order to validate the proposed architecture, we analyze a few major types of dataset based on the proposed three-level architecture. Further, we tested authentic datasets on Hadoop ecosystem to determine the threshold and the analysis shows that the proposed architecture offers useful insights into the community development authorities to improve the existing smart city architecture.</description><subject>Architecture</subject><subject>Big Data</subject><subject>Communication</subject><subject>Community development</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>Data management</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Energy consumption</subject><subject>Interest groups</subject><subject>Internet of Things</subject><subject>Optimization techniques</subject><subject>Performance enhancement</subject><subject>Real time</subject><subject>Researchers</subject><subject>Smart cities</subject><subject>Social research</subject><subject>Surveillance</subject><subject>Traffic congestion</subject><subject>Wireless networks</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkMtOwzAQRSMEEs8da2SJJYT6kdj1srTlIRWBeKwjxx43Lk1SbFeoH8B_kyoIlqzuaOboSnOS5JTgK0LyfEAxEQOZUckF30kOSM5wOuRC7P7OXO4nhyEsMMYMU3KQfF27OZqoqNCoUctNdDqgaV2CMWDQS618RGMXN2jkdeUi6Lj2gGzr0RP4LmrVaEDTptpmDU1EsfLtel6hZ1DL9NXV0Lc_-VZDCK6ZI9UYNAHtgmub9EG9d7vjZM-qZYCTnzxK3m6mr-O7dPZ4ez8ezVKdUR5TqkFLXkpZ5oJZNlQZNZksuWHGgimpVN0Vg85VaYkFwrDGIiu5kFJkjFt2lJz3vSvffqwhxGLRrn33eChohgWnMh-KjrrsKe3bEDzYYuVdp2JTEFxsRRdb0cWP6A6_6PHKNUZ9uv_os56GjgGr_miKOcsp-wbDIYh4</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Nathali Silva, Bhagya</creator><creator>Han, Kijun</creator><creator>Khan, Murad</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3520-6194</orcidid><orcidid>https://orcid.org/0000-0003-0061-0557</orcidid></search><sort><creationdate>20170101</creationdate><title>Big Data Analytics Embedded Smart City Architecture for Performance Enhancement through Real-Time Data Processing and Decision-Making</title><author>Nathali Silva, Bhagya ; Han, Kijun ; Khan, Murad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-2cec96b99b573f38a42d49b6d3dfedb29a96b0ec5abf1fe130c074b67997436f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Architecture</topic><topic>Big Data</topic><topic>Communication</topic><topic>Community development</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>Data management</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Energy consumption</topic><topic>Interest groups</topic><topic>Internet of Things</topic><topic>Optimization techniques</topic><topic>Performance enhancement</topic><topic>Real time</topic><topic>Researchers</topic><topic>Smart cities</topic><topic>Social research</topic><topic>Surveillance</topic><topic>Traffic congestion</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nathali Silva, Bhagya</creatorcontrib><creatorcontrib>Han, Kijun</creatorcontrib><creatorcontrib>Khan, Murad</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nathali Silva, Bhagya</au><au>Han, Kijun</au><au>Khan, Murad</au><au>Lloret, Jaime</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Big Data Analytics Embedded Smart City Architecture for Performance Enhancement through Real-Time Data Processing and Decision-Making</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>The concept of the smart city is widely favored, as it enhances the quality of life of urban citizens, involving multiple disciplines, that is, smart community, smart transportation, smart healthcare, smart parking, and many more. Continuous growth of the complex urban networks is significantly challenged by real-time data processing and intelligent decision-making capabilities. Therefore, in this paper, we propose a smart city framework based on Big Data analytics. The proposed framework operates on three levels: (1) data generation and acquisition level collecting heterogeneous data related to city operations, (2) data management and processing level filtering, analyzing, and storing data to make decisions and events autonomously, and (3) application level initiating execution of the events corresponding to the received decisions. In order to validate the proposed architecture, we analyze a few major types of dataset based on the proposed three-level architecture. Further, we tested authentic datasets on Hadoop ecosystem to determine the threshold and the analysis shows that the proposed architecture offers useful insights into the community development authorities to improve the existing smart city architecture.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2017/9429676</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3520-6194</orcidid><orcidid>https://orcid.org/0000-0003-0061-0557</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-8669
ispartof Wireless communications and mobile computing, 2017-01, Vol.2017 (2017), p.1-12
issn 1530-8669
1530-8677
language eng
recordid cdi_proquest_journals_2407629587
source Wiley-Blackwell Open Access Titles; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Architecture
Big Data
Communication
Community development
Data analysis
Data collection
Data management
Data processing
Datasets
Decision analysis
Decision making
Energy consumption
Interest groups
Internet of Things
Optimization techniques
Performance enhancement
Real time
Researchers
Smart cities
Social research
Surveillance
Traffic congestion
Wireless networks
title Big Data Analytics Embedded Smart City Architecture for Performance Enhancement through Real-Time Data Processing and Decision-Making
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T21%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Big%20Data%20Analytics%20Embedded%20Smart%20City%20Architecture%20for%20Performance%20Enhancement%20through%20Real-Time%20Data%20Processing%20and%20Decision-Making&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Nathali%20Silva,%20Bhagya&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2017/9429676&rft_dat=%3Cproquest_cross%3E2407629587%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407629587&rft_id=info:pmid/&rfr_iscdi=true