Dynamic OFDM Transmission for a Cognitive Radio Device Based on a Neural Network and Multiresolution Analysis
Cognitive radio communications depend on methods for sensing the spectrum as well as adapting transmission parameters to available resources. In this context, this work proposes a novel system that makes use of prediction to dynamically allocate subcarriers to different transmissions in an orthogona...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2018-01, Vol.2018 (2018), p.1-11 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 2018 |
container_start_page | 1 |
container_title | Wireless communications and mobile computing |
container_volume | 2018 |
creator | Prieto-Guerrero, Alfonso Pedraza, Luis F. Hernández, Cesar A. Rodriguez-Colina, Enrique Lopez-Guerrero, Miguel |
description | Cognitive radio communications depend on methods for sensing the spectrum as well as adapting transmission parameters to available resources. In this context, this work proposes a novel system that makes use of prediction to dynamically allocate subcarriers to different transmissions in an orthogonal frequency division multiplexing (OFDM) system. To this end, the proposal is comprised of a predictive component which makes use of a neural network and multiresolution analysis and a second component, which uses wavelet analysis and cognitive radio functions to carry out a dynamic allocation of subcarriers in an OFDM system. The use of wavelets allows the system to split the data stream in blocks of information to be transmitted over multiple orthogonal subcarriers. This proposed system makes use of the decision-making functions of a cognitive radio device to select the number and position of the subcarriers used for communications without interference. Although there exist other OFDM systems using wavelets, they are not used in combination with the decision-making functions implemented in cognitive radio devices. In contrast, the proposed OFDM system operates using some of these functions, thus being able to better adapt its operational parameters. The use of wavelets combined with a neural network model improves the prediction of the bandwidth utilization as shown in this work. It is concluded that the proposed system improves spectral efficiency and data rate by using the decision-making functions of cognitive radios to select the appropriate OFDM subcarriers to be used during the data transmissions. |
doi_str_mv | 10.1155/2018/4392710 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407628650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407628650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-e032a726ccbd455b390ac454fe6b7051fa0676df75a38d84939fa503a947e67b3</originalsourceid><addsrcrecordid>eNqF0MFPwjAUBvDGaCKiN8-miUdFXte13Y4IoiYgicHz8tg6LW4rthuE_96RGT16-t7hly8vHyGXDO4YE2IYAIuGIY8DxeCI9JjgMIikUse_t4xPyZn3awDgELAeKSf7CkuT0sV0MqdLh5UvjffGVjS3jiId2_fK1Gar6StmxtKJ3ppU03v0OqOtQvqiG4dFG_XOuk-KVUbnTVEbp70tmvpQNaqw2Hvjz8lJjoXXFz_ZJ2_Th-X4aTBbPD6PR7NByiXUAw08QBXINF1loRArHgOmoQhzLVcKBMsRpJJZrgTyKIvCmMc5CuAYh0pLteJ9ct31bpz9arSvk7VtXPuET4IQlAwi2fI-ue1U6qz3TufJxpkS3T5hkBwGTQ6DJj-Dtvym4x-mynBn_tNXndat0Tn-6YBJYDH_BkQhfoE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407628650</pqid></control><display><type>article</type><title>Dynamic OFDM Transmission for a Cognitive Radio Device Based on a Neural Network and Multiresolution Analysis</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Prieto-Guerrero, Alfonso ; Pedraza, Luis F. ; Hernández, Cesar A. ; Rodriguez-Colina, Enrique ; Lopez-Guerrero, Miguel</creator><contributor>Martinez, Francisco J.</contributor><creatorcontrib>Prieto-Guerrero, Alfonso ; Pedraza, Luis F. ; Hernández, Cesar A. ; Rodriguez-Colina, Enrique ; Lopez-Guerrero, Miguel ; Martinez, Francisco J.</creatorcontrib><description>Cognitive radio communications depend on methods for sensing the spectrum as well as adapting transmission parameters to available resources. In this context, this work proposes a novel system that makes use of prediction to dynamically allocate subcarriers to different transmissions in an orthogonal frequency division multiplexing (OFDM) system. To this end, the proposal is comprised of a predictive component which makes use of a neural network and multiresolution analysis and a second component, which uses wavelet analysis and cognitive radio functions to carry out a dynamic allocation of subcarriers in an OFDM system. The use of wavelets allows the system to split the data stream in blocks of information to be transmitted over multiple orthogonal subcarriers. This proposed system makes use of the decision-making functions of a cognitive radio device to select the number and position of the subcarriers used for communications without interference. Although there exist other OFDM systems using wavelets, they are not used in combination with the decision-making functions implemented in cognitive radio devices. In contrast, the proposed OFDM system operates using some of these functions, thus being able to better adapt its operational parameters. The use of wavelets combined with a neural network model improves the prediction of the bandwidth utilization as shown in this work. It is concluded that the proposed system improves spectral efficiency and data rate by using the decision-making functions of cognitive radios to select the appropriate OFDM subcarriers to be used during the data transmissions.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2018/4392710</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Artificial intelligence ; Bandwidths ; Cognitive radio ; Communication ; Data transmission ; Decision making ; Decomposition ; Licenses ; Multiresolution analysis ; Neural networks ; Noise ; Orthogonal Frequency Division Multiplexing ; Parameters ; Radio communications ; Radios ; Spectrum allocation ; Subcarriers ; Wavelet analysis ; Wavelet transforms</subject><ispartof>Wireless communications and mobile computing, 2018-01, Vol.2018 (2018), p.1-11</ispartof><rights>Copyright © 2018 Enrique Rodriguez-Colina et al.</rights><rights>Copyright © 2018 Enrique Rodriguez-Colina et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-e032a726ccbd455b390ac454fe6b7051fa0676df75a38d84939fa503a947e67b3</citedby><cites>FETCH-LOGICAL-c360t-e032a726ccbd455b390ac454fe6b7051fa0676df75a38d84939fa503a947e67b3</cites><orcidid>0000-0002-2661-2449 ; 0000-0001-9409-8341 ; 0000-0003-1696-3349 ; 0000-0001-5987-8780 ; 0000-0002-0997-6478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Martinez, Francisco J.</contributor><creatorcontrib>Prieto-Guerrero, Alfonso</creatorcontrib><creatorcontrib>Pedraza, Luis F.</creatorcontrib><creatorcontrib>Hernández, Cesar A.</creatorcontrib><creatorcontrib>Rodriguez-Colina, Enrique</creatorcontrib><creatorcontrib>Lopez-Guerrero, Miguel</creatorcontrib><title>Dynamic OFDM Transmission for a Cognitive Radio Device Based on a Neural Network and Multiresolution Analysis</title><title>Wireless communications and mobile computing</title><description>Cognitive radio communications depend on methods for sensing the spectrum as well as adapting transmission parameters to available resources. In this context, this work proposes a novel system that makes use of prediction to dynamically allocate subcarriers to different transmissions in an orthogonal frequency division multiplexing (OFDM) system. To this end, the proposal is comprised of a predictive component which makes use of a neural network and multiresolution analysis and a second component, which uses wavelet analysis and cognitive radio functions to carry out a dynamic allocation of subcarriers in an OFDM system. The use of wavelets allows the system to split the data stream in blocks of information to be transmitted over multiple orthogonal subcarriers. This proposed system makes use of the decision-making functions of a cognitive radio device to select the number and position of the subcarriers used for communications without interference. Although there exist other OFDM systems using wavelets, they are not used in combination with the decision-making functions implemented in cognitive radio devices. In contrast, the proposed OFDM system operates using some of these functions, thus being able to better adapt its operational parameters. The use of wavelets combined with a neural network model improves the prediction of the bandwidth utilization as shown in this work. It is concluded that the proposed system improves spectral efficiency and data rate by using the decision-making functions of cognitive radios to select the appropriate OFDM subcarriers to be used during the data transmissions.</description><subject>Artificial intelligence</subject><subject>Bandwidths</subject><subject>Cognitive radio</subject><subject>Communication</subject><subject>Data transmission</subject><subject>Decision making</subject><subject>Decomposition</subject><subject>Licenses</subject><subject>Multiresolution analysis</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Parameters</subject><subject>Radio communications</subject><subject>Radios</subject><subject>Spectrum allocation</subject><subject>Subcarriers</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0MFPwjAUBvDGaCKiN8-miUdFXte13Y4IoiYgicHz8tg6LW4rthuE_96RGT16-t7hly8vHyGXDO4YE2IYAIuGIY8DxeCI9JjgMIikUse_t4xPyZn3awDgELAeKSf7CkuT0sV0MqdLh5UvjffGVjS3jiId2_fK1Gar6StmxtKJ3ppU03v0OqOtQvqiG4dFG_XOuk-KVUbnTVEbp70tmvpQNaqw2Hvjz8lJjoXXFz_ZJ2_Th-X4aTBbPD6PR7NByiXUAw08QBXINF1loRArHgOmoQhzLVcKBMsRpJJZrgTyKIvCmMc5CuAYh0pLteJ9ct31bpz9arSvk7VtXPuET4IQlAwi2fI-ue1U6qz3TufJxpkS3T5hkBwGTQ6DJj-Dtvym4x-mynBn_tNXndat0Tn-6YBJYDH_BkQhfoE</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Prieto-Guerrero, Alfonso</creator><creator>Pedraza, Luis F.</creator><creator>Hernández, Cesar A.</creator><creator>Rodriguez-Colina, Enrique</creator><creator>Lopez-Guerrero, Miguel</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2661-2449</orcidid><orcidid>https://orcid.org/0000-0001-9409-8341</orcidid><orcidid>https://orcid.org/0000-0003-1696-3349</orcidid><orcidid>https://orcid.org/0000-0001-5987-8780</orcidid><orcidid>https://orcid.org/0000-0002-0997-6478</orcidid></search><sort><creationdate>20180101</creationdate><title>Dynamic OFDM Transmission for a Cognitive Radio Device Based on a Neural Network and Multiresolution Analysis</title><author>Prieto-Guerrero, Alfonso ; Pedraza, Luis F. ; Hernández, Cesar A. ; Rodriguez-Colina, Enrique ; Lopez-Guerrero, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-e032a726ccbd455b390ac454fe6b7051fa0676df75a38d84939fa503a947e67b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial intelligence</topic><topic>Bandwidths</topic><topic>Cognitive radio</topic><topic>Communication</topic><topic>Data transmission</topic><topic>Decision making</topic><topic>Decomposition</topic><topic>Licenses</topic><topic>Multiresolution analysis</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Parameters</topic><topic>Radio communications</topic><topic>Radios</topic><topic>Spectrum allocation</topic><topic>Subcarriers</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prieto-Guerrero, Alfonso</creatorcontrib><creatorcontrib>Pedraza, Luis F.</creatorcontrib><creatorcontrib>Hernández, Cesar A.</creatorcontrib><creatorcontrib>Rodriguez-Colina, Enrique</creatorcontrib><creatorcontrib>Lopez-Guerrero, Miguel</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prieto-Guerrero, Alfonso</au><au>Pedraza, Luis F.</au><au>Hernández, Cesar A.</au><au>Rodriguez-Colina, Enrique</au><au>Lopez-Guerrero, Miguel</au><au>Martinez, Francisco J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic OFDM Transmission for a Cognitive Radio Device Based on a Neural Network and Multiresolution Analysis</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>Cognitive radio communications depend on methods for sensing the spectrum as well as adapting transmission parameters to available resources. In this context, this work proposes a novel system that makes use of prediction to dynamically allocate subcarriers to different transmissions in an orthogonal frequency division multiplexing (OFDM) system. To this end, the proposal is comprised of a predictive component which makes use of a neural network and multiresolution analysis and a second component, which uses wavelet analysis and cognitive radio functions to carry out a dynamic allocation of subcarriers in an OFDM system. The use of wavelets allows the system to split the data stream in blocks of information to be transmitted over multiple orthogonal subcarriers. This proposed system makes use of the decision-making functions of a cognitive radio device to select the number and position of the subcarriers used for communications without interference. Although there exist other OFDM systems using wavelets, they are not used in combination with the decision-making functions implemented in cognitive radio devices. In contrast, the proposed OFDM system operates using some of these functions, thus being able to better adapt its operational parameters. The use of wavelets combined with a neural network model improves the prediction of the bandwidth utilization as shown in this work. It is concluded that the proposed system improves spectral efficiency and data rate by using the decision-making functions of cognitive radios to select the appropriate OFDM subcarriers to be used during the data transmissions.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/4392710</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2661-2449</orcidid><orcidid>https://orcid.org/0000-0001-9409-8341</orcidid><orcidid>https://orcid.org/0000-0003-1696-3349</orcidid><orcidid>https://orcid.org/0000-0001-5987-8780</orcidid><orcidid>https://orcid.org/0000-0002-0997-6478</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-8669 |
ispartof | Wireless communications and mobile computing, 2018-01, Vol.2018 (2018), p.1-11 |
issn | 1530-8669 1530-8677 |
language | eng |
recordid | cdi_proquest_journals_2407628650 |
source | Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Artificial intelligence Bandwidths Cognitive radio Communication Data transmission Decision making Decomposition Licenses Multiresolution analysis Neural networks Noise Orthogonal Frequency Division Multiplexing Parameters Radio communications Radios Spectrum allocation Subcarriers Wavelet analysis Wavelet transforms |
title | Dynamic OFDM Transmission for a Cognitive Radio Device Based on a Neural Network and Multiresolution Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A35%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20OFDM%20Transmission%20for%20a%20Cognitive%20Radio%20Device%20Based%20on%20a%20Neural%20Network%20and%20Multiresolution%20Analysis&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Prieto-Guerrero,%20Alfonso&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2018/4392710&rft_dat=%3Cproquest_cross%3E2407628650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407628650&rft_id=info:pmid/&rfr_iscdi=true |