The Rayleigh Fading Channel Prediction via Deep Learning
This paper presents a multi-time channel prediction system based on backpropagation (BP) neural network with multi-hidden layers, which can predict channel information effectively and benefit for massive MIMO performance, power control, and artificial noise physical layer security scheme design. Mea...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2018-01, Vol.2018 (2018), p.1-11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 2018 |
container_start_page | 1 |
container_title | Wireless communications and mobile computing |
container_volume | 2018 |
creator | Pan, Fei Song, Huanhuan Wu, Jinsong Wen, Hong Liao, Run-Fa Dong, Lian |
description | This paper presents a multi-time channel prediction system based on backpropagation (BP) neural network with multi-hidden layers, which can predict channel information effectively and benefit for massive MIMO performance, power control, and artificial noise physical layer security scheme design. Meanwhile, an early stopping strategy to avoid the overfitting of BP neural network is introduced. By comparing the predicted normalized mean square error (NMSE), the simulation results show that the performances of the proposed scheme are extremely improved. Moreover, a sparse channel sample construction method is proposed, which saves system resources effectively without weakening performances. |
doi_str_mv | 10.1155/2018/6497340 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407628615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407628615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-abb4805465180cad2a2301582e894c40b1aa40d1f496c893d73da1a3a652d3753</originalsourceid><addsrcrecordid>eNqF0M1LAzEQBfAgCtbqzbMEPOrayedmj1KtCgVF6jlMN9luSs3WbKv0v3fLih49zRx-vAePkHMGN4wpNeLAzEjLIhcSDsiAKQGZ0Xl--Pvr4pictO0SAARwNiBmVnv6iruVD4uaTtCFuKDjGmP0K_qSvAvlJjSRfgakd96v6dRjih06JUcVrlp_9nOH5G1yPxs_ZtPnh6fx7TQrJdebDOdzaUBJrZiBEh1HLoApw70pZClhzhAlOFbJQpemEC4XDhkK1Io7kSsxJJd97jo1H1vfbuyy2abYVVouIdfcaLZX170qU9O2yVd2ncI7pp1lYPfb2P029mebjl_1vA7R4Vf4T1_02nfGV_inOevKC_EN6NBqcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407628615</pqid></control><display><type>article</type><title>The Rayleigh Fading Channel Prediction via Deep Learning</title><source>Wiley-Blackwell Open Access Collection</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Pan, Fei ; Song, Huanhuan ; Wu, Jinsong ; Wen, Hong ; Liao, Run-Fa ; Dong, Lian</creator><contributor>Cassioli, Dajana</contributor><creatorcontrib>Pan, Fei ; Song, Huanhuan ; Wu, Jinsong ; Wen, Hong ; Liao, Run-Fa ; Dong, Lian ; Cassioli, Dajana</creatorcontrib><description>This paper presents a multi-time channel prediction system based on backpropagation (BP) neural network with multi-hidden layers, which can predict channel information effectively and benefit for massive MIMO performance, power control, and artificial noise physical layer security scheme design. Meanwhile, an early stopping strategy to avoid the overfitting of BP neural network is introduced. By comparing the predicted normalized mean square error (NMSE), the simulation results show that the performances of the proposed scheme are extremely improved. Moreover, a sparse channel sample construction method is proposed, which saves system resources effectively without weakening performances.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2018/6497340</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Back propagation ; Computer simulation ; Cooperation ; Deep learning ; Machine learning ; MIMO (control systems) ; Neural networks ; Noise control ; Pattern recognition ; Power control ; Propagation ; Wireless networks</subject><ispartof>Wireless communications and mobile computing, 2018-01, Vol.2018 (2018), p.1-11</ispartof><rights>Copyright © 2018 Run-Fa Liao et al.</rights><rights>Copyright © 2018 Run-Fa Liao et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-abb4805465180cad2a2301582e894c40b1aa40d1f496c893d73da1a3a652d3753</citedby><cites>FETCH-LOGICAL-c426t-abb4805465180cad2a2301582e894c40b1aa40d1f496c893d73da1a3a652d3753</cites><orcidid>0000-0003-1776-6013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Cassioli, Dajana</contributor><creatorcontrib>Pan, Fei</creatorcontrib><creatorcontrib>Song, Huanhuan</creatorcontrib><creatorcontrib>Wu, Jinsong</creatorcontrib><creatorcontrib>Wen, Hong</creatorcontrib><creatorcontrib>Liao, Run-Fa</creatorcontrib><creatorcontrib>Dong, Lian</creatorcontrib><title>The Rayleigh Fading Channel Prediction via Deep Learning</title><title>Wireless communications and mobile computing</title><description>This paper presents a multi-time channel prediction system based on backpropagation (BP) neural network with multi-hidden layers, which can predict channel information effectively and benefit for massive MIMO performance, power control, and artificial noise physical layer security scheme design. Meanwhile, an early stopping strategy to avoid the overfitting of BP neural network is introduced. By comparing the predicted normalized mean square error (NMSE), the simulation results show that the performances of the proposed scheme are extremely improved. Moreover, a sparse channel sample construction method is proposed, which saves system resources effectively without weakening performances.</description><subject>Algorithms</subject><subject>Back propagation</subject><subject>Computer simulation</subject><subject>Cooperation</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>MIMO (control systems)</subject><subject>Neural networks</subject><subject>Noise control</subject><subject>Pattern recognition</subject><subject>Power control</subject><subject>Propagation</subject><subject>Wireless networks</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0M1LAzEQBfAgCtbqzbMEPOrayedmj1KtCgVF6jlMN9luSs3WbKv0v3fLih49zRx-vAePkHMGN4wpNeLAzEjLIhcSDsiAKQGZ0Xl--Pvr4pictO0SAARwNiBmVnv6iruVD4uaTtCFuKDjGmP0K_qSvAvlJjSRfgakd96v6dRjih06JUcVrlp_9nOH5G1yPxs_ZtPnh6fx7TQrJdebDOdzaUBJrZiBEh1HLoApw70pZClhzhAlOFbJQpemEC4XDhkK1Io7kSsxJJd97jo1H1vfbuyy2abYVVouIdfcaLZX170qU9O2yVd2ncI7pp1lYPfb2P029mebjl_1vA7R4Vf4T1_02nfGV_inOevKC_EN6NBqcw</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Pan, Fei</creator><creator>Song, Huanhuan</creator><creator>Wu, Jinsong</creator><creator>Wen, Hong</creator><creator>Liao, Run-Fa</creator><creator>Dong, Lian</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1776-6013</orcidid></search><sort><creationdate>20180101</creationdate><title>The Rayleigh Fading Channel Prediction via Deep Learning</title><author>Pan, Fei ; Song, Huanhuan ; Wu, Jinsong ; Wen, Hong ; Liao, Run-Fa ; Dong, Lian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-abb4805465180cad2a2301582e894c40b1aa40d1f496c893d73da1a3a652d3753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Back propagation</topic><topic>Computer simulation</topic><topic>Cooperation</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>MIMO (control systems)</topic><topic>Neural networks</topic><topic>Noise control</topic><topic>Pattern recognition</topic><topic>Power control</topic><topic>Propagation</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Fei</creatorcontrib><creatorcontrib>Song, Huanhuan</creatorcontrib><creatorcontrib>Wu, Jinsong</creatorcontrib><creatorcontrib>Wen, Hong</creatorcontrib><creatorcontrib>Liao, Run-Fa</creatorcontrib><creatorcontrib>Dong, Lian</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Fei</au><au>Song, Huanhuan</au><au>Wu, Jinsong</au><au>Wen, Hong</au><au>Liao, Run-Fa</au><au>Dong, Lian</au><au>Cassioli, Dajana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Rayleigh Fading Channel Prediction via Deep Learning</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>This paper presents a multi-time channel prediction system based on backpropagation (BP) neural network with multi-hidden layers, which can predict channel information effectively and benefit for massive MIMO performance, power control, and artificial noise physical layer security scheme design. Meanwhile, an early stopping strategy to avoid the overfitting of BP neural network is introduced. By comparing the predicted normalized mean square error (NMSE), the simulation results show that the performances of the proposed scheme are extremely improved. Moreover, a sparse channel sample construction method is proposed, which saves system resources effectively without weakening performances.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/6497340</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1776-6013</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-8669 |
ispartof | Wireless communications and mobile computing, 2018-01, Vol.2018 (2018), p.1-11 |
issn | 1530-8669 1530-8677 |
language | eng |
recordid | cdi_proquest_journals_2407628615 |
source | Wiley-Blackwell Open Access Collection; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Algorithms Back propagation Computer simulation Cooperation Deep learning Machine learning MIMO (control systems) Neural networks Noise control Pattern recognition Power control Propagation Wireless networks |
title | The Rayleigh Fading Channel Prediction via Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Rayleigh%20Fading%20Channel%20Prediction%20via%20Deep%20Learning&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Pan,%20Fei&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2018/6497340&rft_dat=%3Cproquest_cross%3E2407628615%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407628615&rft_id=info:pmid/&rfr_iscdi=true |