The Rayleigh Fading Channel Prediction via Deep Learning

This paper presents a multi-time channel prediction system based on backpropagation (BP) neural network with multi-hidden layers, which can predict channel information effectively and benefit for massive MIMO performance, power control, and artificial noise physical layer security scheme design. Mea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless communications and mobile computing 2018-01, Vol.2018 (2018), p.1-11
Hauptverfasser: Pan, Fei, Song, Huanhuan, Wu, Jinsong, Wen, Hong, Liao, Run-Fa, Dong, Lian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 2018
container_start_page 1
container_title Wireless communications and mobile computing
container_volume 2018
creator Pan, Fei
Song, Huanhuan
Wu, Jinsong
Wen, Hong
Liao, Run-Fa
Dong, Lian
description This paper presents a multi-time channel prediction system based on backpropagation (BP) neural network with multi-hidden layers, which can predict channel information effectively and benefit for massive MIMO performance, power control, and artificial noise physical layer security scheme design. Meanwhile, an early stopping strategy to avoid the overfitting of BP neural network is introduced. By comparing the predicted normalized mean square error (NMSE), the simulation results show that the performances of the proposed scheme are extremely improved. Moreover, a sparse channel sample construction method is proposed, which saves system resources effectively without weakening performances.
doi_str_mv 10.1155/2018/6497340
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407628615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407628615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-abb4805465180cad2a2301582e894c40b1aa40d1f496c893d73da1a3a652d3753</originalsourceid><addsrcrecordid>eNqF0M1LAzEQBfAgCtbqzbMEPOrayedmj1KtCgVF6jlMN9luSs3WbKv0v3fLih49zRx-vAePkHMGN4wpNeLAzEjLIhcSDsiAKQGZ0Xl--Pvr4pictO0SAARwNiBmVnv6iruVD4uaTtCFuKDjGmP0K_qSvAvlJjSRfgakd96v6dRjih06JUcVrlp_9nOH5G1yPxs_ZtPnh6fx7TQrJdebDOdzaUBJrZiBEh1HLoApw70pZClhzhAlOFbJQpemEC4XDhkK1Io7kSsxJJd97jo1H1vfbuyy2abYVVouIdfcaLZX170qU9O2yVd2ncI7pp1lYPfb2P029mebjl_1vA7R4Vf4T1_02nfGV_inOevKC_EN6NBqcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407628615</pqid></control><display><type>article</type><title>The Rayleigh Fading Channel Prediction via Deep Learning</title><source>Wiley-Blackwell Open Access Collection</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Pan, Fei ; Song, Huanhuan ; Wu, Jinsong ; Wen, Hong ; Liao, Run-Fa ; Dong, Lian</creator><contributor>Cassioli, Dajana</contributor><creatorcontrib>Pan, Fei ; Song, Huanhuan ; Wu, Jinsong ; Wen, Hong ; Liao, Run-Fa ; Dong, Lian ; Cassioli, Dajana</creatorcontrib><description>This paper presents a multi-time channel prediction system based on backpropagation (BP) neural network with multi-hidden layers, which can predict channel information effectively and benefit for massive MIMO performance, power control, and artificial noise physical layer security scheme design. Meanwhile, an early stopping strategy to avoid the overfitting of BP neural network is introduced. By comparing the predicted normalized mean square error (NMSE), the simulation results show that the performances of the proposed scheme are extremely improved. Moreover, a sparse channel sample construction method is proposed, which saves system resources effectively without weakening performances.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2018/6497340</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Back propagation ; Computer simulation ; Cooperation ; Deep learning ; Machine learning ; MIMO (control systems) ; Neural networks ; Noise control ; Pattern recognition ; Power control ; Propagation ; Wireless networks</subject><ispartof>Wireless communications and mobile computing, 2018-01, Vol.2018 (2018), p.1-11</ispartof><rights>Copyright © 2018 Run-Fa Liao et al.</rights><rights>Copyright © 2018 Run-Fa Liao et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-abb4805465180cad2a2301582e894c40b1aa40d1f496c893d73da1a3a652d3753</citedby><cites>FETCH-LOGICAL-c426t-abb4805465180cad2a2301582e894c40b1aa40d1f496c893d73da1a3a652d3753</cites><orcidid>0000-0003-1776-6013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Cassioli, Dajana</contributor><creatorcontrib>Pan, Fei</creatorcontrib><creatorcontrib>Song, Huanhuan</creatorcontrib><creatorcontrib>Wu, Jinsong</creatorcontrib><creatorcontrib>Wen, Hong</creatorcontrib><creatorcontrib>Liao, Run-Fa</creatorcontrib><creatorcontrib>Dong, Lian</creatorcontrib><title>The Rayleigh Fading Channel Prediction via Deep Learning</title><title>Wireless communications and mobile computing</title><description>This paper presents a multi-time channel prediction system based on backpropagation (BP) neural network with multi-hidden layers, which can predict channel information effectively and benefit for massive MIMO performance, power control, and artificial noise physical layer security scheme design. Meanwhile, an early stopping strategy to avoid the overfitting of BP neural network is introduced. By comparing the predicted normalized mean square error (NMSE), the simulation results show that the performances of the proposed scheme are extremely improved. Moreover, a sparse channel sample construction method is proposed, which saves system resources effectively without weakening performances.</description><subject>Algorithms</subject><subject>Back propagation</subject><subject>Computer simulation</subject><subject>Cooperation</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>MIMO (control systems)</subject><subject>Neural networks</subject><subject>Noise control</subject><subject>Pattern recognition</subject><subject>Power control</subject><subject>Propagation</subject><subject>Wireless networks</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0M1LAzEQBfAgCtbqzbMEPOrayedmj1KtCgVF6jlMN9luSs3WbKv0v3fLih49zRx-vAePkHMGN4wpNeLAzEjLIhcSDsiAKQGZ0Xl--Pvr4pictO0SAARwNiBmVnv6iruVD4uaTtCFuKDjGmP0K_qSvAvlJjSRfgakd96v6dRjih06JUcVrlp_9nOH5G1yPxs_ZtPnh6fx7TQrJdebDOdzaUBJrZiBEh1HLoApw70pZClhzhAlOFbJQpemEC4XDhkK1Io7kSsxJJd97jo1H1vfbuyy2abYVVouIdfcaLZX170qU9O2yVd2ncI7pp1lYPfb2P029mebjl_1vA7R4Vf4T1_02nfGV_inOevKC_EN6NBqcw</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Pan, Fei</creator><creator>Song, Huanhuan</creator><creator>Wu, Jinsong</creator><creator>Wen, Hong</creator><creator>Liao, Run-Fa</creator><creator>Dong, Lian</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1776-6013</orcidid></search><sort><creationdate>20180101</creationdate><title>The Rayleigh Fading Channel Prediction via Deep Learning</title><author>Pan, Fei ; Song, Huanhuan ; Wu, Jinsong ; Wen, Hong ; Liao, Run-Fa ; Dong, Lian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-abb4805465180cad2a2301582e894c40b1aa40d1f496c893d73da1a3a652d3753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Back propagation</topic><topic>Computer simulation</topic><topic>Cooperation</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>MIMO (control systems)</topic><topic>Neural networks</topic><topic>Noise control</topic><topic>Pattern recognition</topic><topic>Power control</topic><topic>Propagation</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Fei</creatorcontrib><creatorcontrib>Song, Huanhuan</creatorcontrib><creatorcontrib>Wu, Jinsong</creatorcontrib><creatorcontrib>Wen, Hong</creatorcontrib><creatorcontrib>Liao, Run-Fa</creatorcontrib><creatorcontrib>Dong, Lian</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Fei</au><au>Song, Huanhuan</au><au>Wu, Jinsong</au><au>Wen, Hong</au><au>Liao, Run-Fa</au><au>Dong, Lian</au><au>Cassioli, Dajana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Rayleigh Fading Channel Prediction via Deep Learning</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>This paper presents a multi-time channel prediction system based on backpropagation (BP) neural network with multi-hidden layers, which can predict channel information effectively and benefit for massive MIMO performance, power control, and artificial noise physical layer security scheme design. Meanwhile, an early stopping strategy to avoid the overfitting of BP neural network is introduced. By comparing the predicted normalized mean square error (NMSE), the simulation results show that the performances of the proposed scheme are extremely improved. Moreover, a sparse channel sample construction method is proposed, which saves system resources effectively without weakening performances.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/6497340</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1776-6013</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-8669
ispartof Wireless communications and mobile computing, 2018-01, Vol.2018 (2018), p.1-11
issn 1530-8669
1530-8677
language eng
recordid cdi_proquest_journals_2407628615
source Wiley-Blackwell Open Access Collection; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Algorithms
Back propagation
Computer simulation
Cooperation
Deep learning
Machine learning
MIMO (control systems)
Neural networks
Noise control
Pattern recognition
Power control
Propagation
Wireless networks
title The Rayleigh Fading Channel Prediction via Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Rayleigh%20Fading%20Channel%20Prediction%20via%20Deep%20Learning&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Pan,%20Fei&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2018/6497340&rft_dat=%3Cproquest_cross%3E2407628615%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407628615&rft_id=info:pmid/&rfr_iscdi=true