Multitask Allocation to Heterogeneous Participants in Mobile Crowd Sensing

Task allocation is a key problem in Mobile Crowd Sensing (MCS). Prior works have mainly assumed that participants can complete tasks once they arrive at the location of tasks. However, this assumption may lead to poor reliability in sensing data because the heterogeneity among participants is disreg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless communications and mobile computing 2018-01, Vol.2018 (2018), p.1-10
Hauptverfasser: Xiong, Haoyi, Yu, Zhiyong, Guo, Wenzhong, Zhu, Weiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2018
container_start_page 1
container_title Wireless communications and mobile computing
container_volume 2018
creator Xiong, Haoyi
Yu, Zhiyong
Guo, Wenzhong
Zhu, Weiping
description Task allocation is a key problem in Mobile Crowd Sensing (MCS). Prior works have mainly assumed that participants can complete tasks once they arrive at the location of tasks. However, this assumption may lead to poor reliability in sensing data because the heterogeneity among participants is disregarded. In this study, we investigate a multitask allocation problem that considers the heterogeneity of participants (i.e., different participants carry various devices and accomplish different tasks). A greedy discrete particle swarm optimization with genetic algorithm operation is proposed in this study to address the abovementioned problem. This study is aimed at maximizing the number of completed tasks while satisfying certain constraints. Simulations over a real-life mobile dataset verify that the proposed algorithm outperforms baseline methods under different settings.
doi_str_mv 10.1155/2018/7218061
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407627554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407627554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-dec53e69e5cb992a442600c040d8a8193ac9b7814bb6afd0c7791a43a84dda6e3</originalsourceid><addsrcrecordid>eNqF0M9LwzAUwPEgCs7pzbMEPGrdy4-m7XEMdcqGgnouaZrOzJrMJGX439vRoUdP7x0-vAdfhM4J3BCSphMKJJ9klOQgyAEakZRBkossO_zdRXGMTkJYAwADSkbocdm10UQZPvC0bZ2S0TiLo8NzHbV3K2216wJ-lj4aZTbSxoCNxUtXmVbjmXfbGr9oG4xdnaKjRrZBn-3nGL3d3b7O5sni6f5hNl0kigmISa1VyrQodKqqoqCScyoAFHCoc5mTgklVVFlOeFUJ2dSgsqwgkjOZ87qWQrMxuhzubrz76nSI5dp13vYvS8ohEzRLU96r60Ep70Lwuik33nxK_10SKHe1yl2tcl-r51cDfze2llvzn74YtO6NbuSfpkRQAuwHhAlzLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407627554</pqid></control><display><type>article</type><title>Multitask Allocation to Heterogeneous Participants in Mobile Crowd Sensing</title><source>Wiley Open Access</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Xiong, Haoyi ; Yu, Zhiyong ; Guo, Wenzhong ; Zhu, Weiping</creator><contributor>Wang, Huaqun</contributor><creatorcontrib>Xiong, Haoyi ; Yu, Zhiyong ; Guo, Wenzhong ; Zhu, Weiping ; Wang, Huaqun</creatorcontrib><description>Task allocation is a key problem in Mobile Crowd Sensing (MCS). Prior works have mainly assumed that participants can complete tasks once they arrive at the location of tasks. However, this assumption may lead to poor reliability in sensing data because the heterogeneity among participants is disregarded. In this study, we investigate a multitask allocation problem that considers the heterogeneity of participants (i.e., different participants carry various devices and accomplish different tasks). A greedy discrete particle swarm optimization with genetic algorithm operation is proposed in this study to address the abovementioned problem. This study is aimed at maximizing the number of completed tasks while satisfying certain constraints. Simulations over a real-life mobile dataset verify that the proposed algorithm outperforms baseline methods under different settings.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2018/7218061</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Computer simulation ; Constraint modelling ; Detection ; Genetic algorithms ; Heterogeneity ; Particle swarm optimization ; Researchers ; Sensors ; Workloads</subject><ispartof>Wireless communications and mobile computing, 2018-01, Vol.2018 (2018), p.1-10</ispartof><rights>Copyright © 2018 Weiping Zhu et al.</rights><rights>Copyright © 2018 Weiping Zhu et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-dec53e69e5cb992a442600c040d8a8193ac9b7814bb6afd0c7791a43a84dda6e3</citedby><cites>FETCH-LOGICAL-c360t-dec53e69e5cb992a442600c040d8a8193ac9b7814bb6afd0c7791a43a84dda6e3</cites><orcidid>0000-0002-0311-5394 ; 0000-0001-6586-4588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Wang, Huaqun</contributor><creatorcontrib>Xiong, Haoyi</creatorcontrib><creatorcontrib>Yu, Zhiyong</creatorcontrib><creatorcontrib>Guo, Wenzhong</creatorcontrib><creatorcontrib>Zhu, Weiping</creatorcontrib><title>Multitask Allocation to Heterogeneous Participants in Mobile Crowd Sensing</title><title>Wireless communications and mobile computing</title><description>Task allocation is a key problem in Mobile Crowd Sensing (MCS). Prior works have mainly assumed that participants can complete tasks once they arrive at the location of tasks. However, this assumption may lead to poor reliability in sensing data because the heterogeneity among participants is disregarded. In this study, we investigate a multitask allocation problem that considers the heterogeneity of participants (i.e., different participants carry various devices and accomplish different tasks). A greedy discrete particle swarm optimization with genetic algorithm operation is proposed in this study to address the abovementioned problem. This study is aimed at maximizing the number of completed tasks while satisfying certain constraints. Simulations over a real-life mobile dataset verify that the proposed algorithm outperforms baseline methods under different settings.</description><subject>Computer simulation</subject><subject>Constraint modelling</subject><subject>Detection</subject><subject>Genetic algorithms</subject><subject>Heterogeneity</subject><subject>Particle swarm optimization</subject><subject>Researchers</subject><subject>Sensors</subject><subject>Workloads</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0M9LwzAUwPEgCs7pzbMEPGrdy4-m7XEMdcqGgnouaZrOzJrMJGX439vRoUdP7x0-vAdfhM4J3BCSphMKJJ9klOQgyAEakZRBkossO_zdRXGMTkJYAwADSkbocdm10UQZPvC0bZ2S0TiLo8NzHbV3K2216wJ-lj4aZTbSxoCNxUtXmVbjmXfbGr9oG4xdnaKjRrZBn-3nGL3d3b7O5sni6f5hNl0kigmISa1VyrQodKqqoqCScyoAFHCoc5mTgklVVFlOeFUJ2dSgsqwgkjOZ87qWQrMxuhzubrz76nSI5dp13vYvS8ohEzRLU96r60Ep70Lwuik33nxK_10SKHe1yl2tcl-r51cDfze2llvzn74YtO6NbuSfpkRQAuwHhAlzLg</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Xiong, Haoyi</creator><creator>Yu, Zhiyong</creator><creator>Guo, Wenzhong</creator><creator>Zhu, Weiping</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0311-5394</orcidid><orcidid>https://orcid.org/0000-0001-6586-4588</orcidid></search><sort><creationdate>20180101</creationdate><title>Multitask Allocation to Heterogeneous Participants in Mobile Crowd Sensing</title><author>Xiong, Haoyi ; Yu, Zhiyong ; Guo, Wenzhong ; Zhu, Weiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-dec53e69e5cb992a442600c040d8a8193ac9b7814bb6afd0c7791a43a84dda6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Constraint modelling</topic><topic>Detection</topic><topic>Genetic algorithms</topic><topic>Heterogeneity</topic><topic>Particle swarm optimization</topic><topic>Researchers</topic><topic>Sensors</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Haoyi</creatorcontrib><creatorcontrib>Yu, Zhiyong</creatorcontrib><creatorcontrib>Guo, Wenzhong</creatorcontrib><creatorcontrib>Zhu, Weiping</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Haoyi</au><au>Yu, Zhiyong</au><au>Guo, Wenzhong</au><au>Zhu, Weiping</au><au>Wang, Huaqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multitask Allocation to Heterogeneous Participants in Mobile Crowd Sensing</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>Task allocation is a key problem in Mobile Crowd Sensing (MCS). Prior works have mainly assumed that participants can complete tasks once they arrive at the location of tasks. However, this assumption may lead to poor reliability in sensing data because the heterogeneity among participants is disregarded. In this study, we investigate a multitask allocation problem that considers the heterogeneity of participants (i.e., different participants carry various devices and accomplish different tasks). A greedy discrete particle swarm optimization with genetic algorithm operation is proposed in this study to address the abovementioned problem. This study is aimed at maximizing the number of completed tasks while satisfying certain constraints. Simulations over a real-life mobile dataset verify that the proposed algorithm outperforms baseline methods under different settings.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/7218061</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0311-5394</orcidid><orcidid>https://orcid.org/0000-0001-6586-4588</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-8669
ispartof Wireless communications and mobile computing, 2018-01, Vol.2018 (2018), p.1-10
issn 1530-8669
1530-8677
language eng
recordid cdi_proquest_journals_2407627554
source Wiley Open Access; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Computer simulation
Constraint modelling
Detection
Genetic algorithms
Heterogeneity
Particle swarm optimization
Researchers
Sensors
Workloads
title Multitask Allocation to Heterogeneous Participants in Mobile Crowd Sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A16%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multitask%20Allocation%20to%20Heterogeneous%20Participants%20in%20Mobile%20Crowd%20Sensing&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Xiong,%20Haoyi&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2018/7218061&rft_dat=%3Cproquest_cross%3E2407627554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407627554&rft_id=info:pmid/&rfr_iscdi=true