Multitask Allocation to Heterogeneous Participants in Mobile Crowd Sensing
Task allocation is a key problem in Mobile Crowd Sensing (MCS). Prior works have mainly assumed that participants can complete tasks once they arrive at the location of tasks. However, this assumption may lead to poor reliability in sensing data because the heterogeneity among participants is disreg...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2018-01, Vol.2018 (2018), p.1-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 2018 |
container_start_page | 1 |
container_title | Wireless communications and mobile computing |
container_volume | 2018 |
creator | Xiong, Haoyi Yu, Zhiyong Guo, Wenzhong Zhu, Weiping |
description | Task allocation is a key problem in Mobile Crowd Sensing (MCS). Prior works have mainly assumed that participants can complete tasks once they arrive at the location of tasks. However, this assumption may lead to poor reliability in sensing data because the heterogeneity among participants is disregarded. In this study, we investigate a multitask allocation problem that considers the heterogeneity of participants (i.e., different participants carry various devices and accomplish different tasks). A greedy discrete particle swarm optimization with genetic algorithm operation is proposed in this study to address the abovementioned problem. This study is aimed at maximizing the number of completed tasks while satisfying certain constraints. Simulations over a real-life mobile dataset verify that the proposed algorithm outperforms baseline methods under different settings. |
doi_str_mv | 10.1155/2018/7218061 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407627554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407627554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-dec53e69e5cb992a442600c040d8a8193ac9b7814bb6afd0c7791a43a84dda6e3</originalsourceid><addsrcrecordid>eNqF0M9LwzAUwPEgCs7pzbMEPGrdy4-m7XEMdcqGgnouaZrOzJrMJGX439vRoUdP7x0-vAdfhM4J3BCSphMKJJ9klOQgyAEakZRBkossO_zdRXGMTkJYAwADSkbocdm10UQZPvC0bZ2S0TiLo8NzHbV3K2216wJ-lj4aZTbSxoCNxUtXmVbjmXfbGr9oG4xdnaKjRrZBn-3nGL3d3b7O5sni6f5hNl0kigmISa1VyrQodKqqoqCScyoAFHCoc5mTgklVVFlOeFUJ2dSgsqwgkjOZ87qWQrMxuhzubrz76nSI5dp13vYvS8ohEzRLU96r60Ep70Lwuik33nxK_10SKHe1yl2tcl-r51cDfze2llvzn74YtO6NbuSfpkRQAuwHhAlzLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407627554</pqid></control><display><type>article</type><title>Multitask Allocation to Heterogeneous Participants in Mobile Crowd Sensing</title><source>Wiley Open Access</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Xiong, Haoyi ; Yu, Zhiyong ; Guo, Wenzhong ; Zhu, Weiping</creator><contributor>Wang, Huaqun</contributor><creatorcontrib>Xiong, Haoyi ; Yu, Zhiyong ; Guo, Wenzhong ; Zhu, Weiping ; Wang, Huaqun</creatorcontrib><description>Task allocation is a key problem in Mobile Crowd Sensing (MCS). Prior works have mainly assumed that participants can complete tasks once they arrive at the location of tasks. However, this assumption may lead to poor reliability in sensing data because the heterogeneity among participants is disregarded. In this study, we investigate a multitask allocation problem that considers the heterogeneity of participants (i.e., different participants carry various devices and accomplish different tasks). A greedy discrete particle swarm optimization with genetic algorithm operation is proposed in this study to address the abovementioned problem. This study is aimed at maximizing the number of completed tasks while satisfying certain constraints. Simulations over a real-life mobile dataset verify that the proposed algorithm outperforms baseline methods under different settings.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2018/7218061</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Computer simulation ; Constraint modelling ; Detection ; Genetic algorithms ; Heterogeneity ; Particle swarm optimization ; Researchers ; Sensors ; Workloads</subject><ispartof>Wireless communications and mobile computing, 2018-01, Vol.2018 (2018), p.1-10</ispartof><rights>Copyright © 2018 Weiping Zhu et al.</rights><rights>Copyright © 2018 Weiping Zhu et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-dec53e69e5cb992a442600c040d8a8193ac9b7814bb6afd0c7791a43a84dda6e3</citedby><cites>FETCH-LOGICAL-c360t-dec53e69e5cb992a442600c040d8a8193ac9b7814bb6afd0c7791a43a84dda6e3</cites><orcidid>0000-0002-0311-5394 ; 0000-0001-6586-4588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Wang, Huaqun</contributor><creatorcontrib>Xiong, Haoyi</creatorcontrib><creatorcontrib>Yu, Zhiyong</creatorcontrib><creatorcontrib>Guo, Wenzhong</creatorcontrib><creatorcontrib>Zhu, Weiping</creatorcontrib><title>Multitask Allocation to Heterogeneous Participants in Mobile Crowd Sensing</title><title>Wireless communications and mobile computing</title><description>Task allocation is a key problem in Mobile Crowd Sensing (MCS). Prior works have mainly assumed that participants can complete tasks once they arrive at the location of tasks. However, this assumption may lead to poor reliability in sensing data because the heterogeneity among participants is disregarded. In this study, we investigate a multitask allocation problem that considers the heterogeneity of participants (i.e., different participants carry various devices and accomplish different tasks). A greedy discrete particle swarm optimization with genetic algorithm operation is proposed in this study to address the abovementioned problem. This study is aimed at maximizing the number of completed tasks while satisfying certain constraints. Simulations over a real-life mobile dataset verify that the proposed algorithm outperforms baseline methods under different settings.</description><subject>Computer simulation</subject><subject>Constraint modelling</subject><subject>Detection</subject><subject>Genetic algorithms</subject><subject>Heterogeneity</subject><subject>Particle swarm optimization</subject><subject>Researchers</subject><subject>Sensors</subject><subject>Workloads</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0M9LwzAUwPEgCs7pzbMEPGrdy4-m7XEMdcqGgnouaZrOzJrMJGX439vRoUdP7x0-vAdfhM4J3BCSphMKJJ9klOQgyAEakZRBkossO_zdRXGMTkJYAwADSkbocdm10UQZPvC0bZ2S0TiLo8NzHbV3K2216wJ-lj4aZTbSxoCNxUtXmVbjmXfbGr9oG4xdnaKjRrZBn-3nGL3d3b7O5sni6f5hNl0kigmISa1VyrQodKqqoqCScyoAFHCoc5mTgklVVFlOeFUJ2dSgsqwgkjOZ87qWQrMxuhzubrz76nSI5dp13vYvS8ohEzRLU96r60Ep70Lwuik33nxK_10SKHe1yl2tcl-r51cDfze2llvzn74YtO6NbuSfpkRQAuwHhAlzLg</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Xiong, Haoyi</creator><creator>Yu, Zhiyong</creator><creator>Guo, Wenzhong</creator><creator>Zhu, Weiping</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0311-5394</orcidid><orcidid>https://orcid.org/0000-0001-6586-4588</orcidid></search><sort><creationdate>20180101</creationdate><title>Multitask Allocation to Heterogeneous Participants in Mobile Crowd Sensing</title><author>Xiong, Haoyi ; Yu, Zhiyong ; Guo, Wenzhong ; Zhu, Weiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-dec53e69e5cb992a442600c040d8a8193ac9b7814bb6afd0c7791a43a84dda6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Constraint modelling</topic><topic>Detection</topic><topic>Genetic algorithms</topic><topic>Heterogeneity</topic><topic>Particle swarm optimization</topic><topic>Researchers</topic><topic>Sensors</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Haoyi</creatorcontrib><creatorcontrib>Yu, Zhiyong</creatorcontrib><creatorcontrib>Guo, Wenzhong</creatorcontrib><creatorcontrib>Zhu, Weiping</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Haoyi</au><au>Yu, Zhiyong</au><au>Guo, Wenzhong</au><au>Zhu, Weiping</au><au>Wang, Huaqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multitask Allocation to Heterogeneous Participants in Mobile Crowd Sensing</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>Task allocation is a key problem in Mobile Crowd Sensing (MCS). Prior works have mainly assumed that participants can complete tasks once they arrive at the location of tasks. However, this assumption may lead to poor reliability in sensing data because the heterogeneity among participants is disregarded. In this study, we investigate a multitask allocation problem that considers the heterogeneity of participants (i.e., different participants carry various devices and accomplish different tasks). A greedy discrete particle swarm optimization with genetic algorithm operation is proposed in this study to address the abovementioned problem. This study is aimed at maximizing the number of completed tasks while satisfying certain constraints. Simulations over a real-life mobile dataset verify that the proposed algorithm outperforms baseline methods under different settings.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/7218061</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0311-5394</orcidid><orcidid>https://orcid.org/0000-0001-6586-4588</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-8669 |
ispartof | Wireless communications and mobile computing, 2018-01, Vol.2018 (2018), p.1-10 |
issn | 1530-8669 1530-8677 |
language | eng |
recordid | cdi_proquest_journals_2407627554 |
source | Wiley Open Access; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Computer simulation Constraint modelling Detection Genetic algorithms Heterogeneity Particle swarm optimization Researchers Sensors Workloads |
title | Multitask Allocation to Heterogeneous Participants in Mobile Crowd Sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A16%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multitask%20Allocation%20to%20Heterogeneous%20Participants%20in%20Mobile%20Crowd%20Sensing&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Xiong,%20Haoyi&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2018/7218061&rft_dat=%3Cproquest_cross%3E2407627554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407627554&rft_id=info:pmid/&rfr_iscdi=true |