Harvested Energy Prediction Schemes for Wireless Sensor Networks: Performance Evaluation and Enhancements
We review harvested energy prediction schemes to be used in wireless sensor networks and explore the relative merits of landmark solutions. We propose enhancements to the well-known Profile-Energy (Pro-Energy) model, the so-called Improved Profile-Energy (IPro-Energy), and compare its performance wi...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2017-01, Vol.2017 (2017), p.1-14 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 2017 |
container_start_page | 1 |
container_title | Wireless communications and mobile computing |
container_volume | 2017 |
creator | Pitsillides, Andreas Saleem, Muhammad Saleem, Umber Qureshi, Hassaan Khaliq Muhammad, Petros Lestas, Marios |
description | We review harvested energy prediction schemes to be used in wireless sensor networks and explore the relative merits of landmark solutions. We propose enhancements to the well-known Profile-Energy (Pro-Energy) model, the so-called Improved Profile-Energy (IPro-Energy), and compare its performance with Accurate Solar Irradiance Prediction Model (ASIM), Pro-Energy, and Weather Conditioned Moving Average (WCMA). The performance metrics considered are the prediction accuracy and the execution time which measure the implementation complexity. In addition, the effectiveness of the considered models, when integrated in an energy management scheme, is also investigated in terms of the achieved throughput and the energy consumption. Both solar irradiance and wind power datasets are used for the evaluation study. Our results indicate that the proposed IPro-Energy scheme outperforms the other candidate models in terms of the prediction accuracy achieved by up to 78% for short term predictions and 50% for medium term prediction horizons. For long term predictions, its prediction accuracy is comparable to the Pro-Energy model but outperforms the other models by up to 64%. In addition, the IPro scheme is able to achieve the highest throughput when integrated in the developed energy management scheme. Finally, the ASIM scheme reports the smallest implementation complexity. |
doi_str_mv | 10.1155/2017/6928325 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407627336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407627336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-91c5cad60b0ac61f4a3af851c1314b54b1d050d0a432e52d08840a2316ebb1633</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuAgCtbqzbMEPGrszG52k3qTUq1QtFDFY9hsJja12dTdtKX_3sSIHj3tB8_MMK_nnSPcIAoxYIDRQA5ZzJk48HooOASxjKLD37scHnsnzi0BgAPDnldMlN2Sqynzx4bs-96fWcoKXReV8ed6QSU5P6-s_1ZYWpFz_pyMa95PVO8q--Fu_RnZBpTKaPLHW7XaqO9iZdqWi_a7JFO7U-8oVytHZz9n33u9H7-MJsH0-eFxdDcNNJdQB0PUQqtMQgpKS8xDxVUeC9TIMUxFmGIGAjJQIWckWAZxHIJiHCWlKUrO-95l13dtq89Ns1qyrDbWNCMTFkIkWcS5bNR1p7StnLOUJ2tblMruE4SkDTNpw0x-wmz4VccXhcnUrvhPX3SaGkO5-tMMJCLyL6HXfiM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407627336</pqid></control><display><type>article</type><title>Harvested Energy Prediction Schemes for Wireless Sensor Networks: Performance Evaluation and Enhancements</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Pitsillides, Andreas ; Saleem, Muhammad ; Saleem, Umber ; Qureshi, Hassaan Khaliq ; Muhammad, Petros ; Lestas, Marios</creator><contributor>Rodríguez Pérez, Miguel ; Miguel Rodríguez Pérez</contributor><creatorcontrib>Pitsillides, Andreas ; Saleem, Muhammad ; Saleem, Umber ; Qureshi, Hassaan Khaliq ; Muhammad, Petros ; Lestas, Marios ; Rodríguez Pérez, Miguel ; Miguel Rodríguez Pérez</creatorcontrib><description>We review harvested energy prediction schemes to be used in wireless sensor networks and explore the relative merits of landmark solutions. We propose enhancements to the well-known Profile-Energy (Pro-Energy) model, the so-called Improved Profile-Energy (IPro-Energy), and compare its performance with Accurate Solar Irradiance Prediction Model (ASIM), Pro-Energy, and Weather Conditioned Moving Average (WCMA). The performance metrics considered are the prediction accuracy and the execution time which measure the implementation complexity. In addition, the effectiveness of the considered models, when integrated in an energy management scheme, is also investigated in terms of the achieved throughput and the energy consumption. Both solar irradiance and wind power datasets are used for the evaluation study. Our results indicate that the proposed IPro-Energy scheme outperforms the other candidate models in terms of the prediction accuracy achieved by up to 78% for short term predictions and 50% for medium term prediction horizons. For long term predictions, its prediction accuracy is comparable to the Pro-Energy model but outperforms the other models by up to 64%. In addition, the IPro scheme is able to achieve the highest throughput when integrated in the developed energy management scheme. Finally, the ASIM scheme reports the smallest implementation complexity.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2017/6928325</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Complexity ; Energy consumption ; Energy management ; Internet of Things ; Irradiance ; Machine learning ; Model accuracy ; Neural networks ; Performance evaluation ; Performance measurement ; Power consumption ; Prediction models ; Sensors ; Stochastic models ; Weather ; Wind power ; Wireless networks ; Wireless sensor networks</subject><ispartof>Wireless communications and mobile computing, 2017-01, Vol.2017 (2017), p.1-14</ispartof><rights>Copyright © 2017 Muhammad et al.</rights><rights>Copyright © 2017 Muhammad et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-91c5cad60b0ac61f4a3af851c1314b54b1d050d0a432e52d08840a2316ebb1633</citedby><cites>FETCH-LOGICAL-c360t-91c5cad60b0ac61f4a3af851c1314b54b1d050d0a432e52d08840a2316ebb1633</cites><orcidid>0000-0001-7534-3559 ; 0000-0003-3042-4050 ; 0000-0001-7281-6672 ; 0000-0001-5072-2851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Rodríguez Pérez, Miguel</contributor><contributor>Miguel Rodríguez Pérez</contributor><creatorcontrib>Pitsillides, Andreas</creatorcontrib><creatorcontrib>Saleem, Muhammad</creatorcontrib><creatorcontrib>Saleem, Umber</creatorcontrib><creatorcontrib>Qureshi, Hassaan Khaliq</creatorcontrib><creatorcontrib>Muhammad, Petros</creatorcontrib><creatorcontrib>Lestas, Marios</creatorcontrib><title>Harvested Energy Prediction Schemes for Wireless Sensor Networks: Performance Evaluation and Enhancements</title><title>Wireless communications and mobile computing</title><description>We review harvested energy prediction schemes to be used in wireless sensor networks and explore the relative merits of landmark solutions. We propose enhancements to the well-known Profile-Energy (Pro-Energy) model, the so-called Improved Profile-Energy (IPro-Energy), and compare its performance with Accurate Solar Irradiance Prediction Model (ASIM), Pro-Energy, and Weather Conditioned Moving Average (WCMA). The performance metrics considered are the prediction accuracy and the execution time which measure the implementation complexity. In addition, the effectiveness of the considered models, when integrated in an energy management scheme, is also investigated in terms of the achieved throughput and the energy consumption. Both solar irradiance and wind power datasets are used for the evaluation study. Our results indicate that the proposed IPro-Energy scheme outperforms the other candidate models in terms of the prediction accuracy achieved by up to 78% for short term predictions and 50% for medium term prediction horizons. For long term predictions, its prediction accuracy is comparable to the Pro-Energy model but outperforms the other models by up to 64%. In addition, the IPro scheme is able to achieve the highest throughput when integrated in the developed energy management scheme. Finally, the ASIM scheme reports the smallest implementation complexity.</description><subject>Accuracy</subject><subject>Complexity</subject><subject>Energy consumption</subject><subject>Energy management</subject><subject>Internet of Things</subject><subject>Irradiance</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Performance measurement</subject><subject>Power consumption</subject><subject>Prediction models</subject><subject>Sensors</subject><subject>Stochastic models</subject><subject>Weather</subject><subject>Wind power</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0E1Lw0AQBuAgCtbqzbMEPGrszG52k3qTUq1QtFDFY9hsJja12dTdtKX_3sSIHj3tB8_MMK_nnSPcIAoxYIDRQA5ZzJk48HooOASxjKLD37scHnsnzi0BgAPDnldMlN2Sqynzx4bs-96fWcoKXReV8ed6QSU5P6-s_1ZYWpFz_pyMa95PVO8q--Fu_RnZBpTKaPLHW7XaqO9iZdqWi_a7JFO7U-8oVytHZz9n33u9H7-MJsH0-eFxdDcNNJdQB0PUQqtMQgpKS8xDxVUeC9TIMUxFmGIGAjJQIWckWAZxHIJiHCWlKUrO-95l13dtq89Ns1qyrDbWNCMTFkIkWcS5bNR1p7StnLOUJ2tblMruE4SkDTNpw0x-wmz4VccXhcnUrvhPX3SaGkO5-tMMJCLyL6HXfiM</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Pitsillides, Andreas</creator><creator>Saleem, Muhammad</creator><creator>Saleem, Umber</creator><creator>Qureshi, Hassaan Khaliq</creator><creator>Muhammad, Petros</creator><creator>Lestas, Marios</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7534-3559</orcidid><orcidid>https://orcid.org/0000-0003-3042-4050</orcidid><orcidid>https://orcid.org/0000-0001-7281-6672</orcidid><orcidid>https://orcid.org/0000-0001-5072-2851</orcidid></search><sort><creationdate>20170101</creationdate><title>Harvested Energy Prediction Schemes for Wireless Sensor Networks: Performance Evaluation and Enhancements</title><author>Pitsillides, Andreas ; Saleem, Muhammad ; Saleem, Umber ; Qureshi, Hassaan Khaliq ; Muhammad, Petros ; Lestas, Marios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-91c5cad60b0ac61f4a3af851c1314b54b1d050d0a432e52d08840a2316ebb1633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Complexity</topic><topic>Energy consumption</topic><topic>Energy management</topic><topic>Internet of Things</topic><topic>Irradiance</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Performance measurement</topic><topic>Power consumption</topic><topic>Prediction models</topic><topic>Sensors</topic><topic>Stochastic models</topic><topic>Weather</topic><topic>Wind power</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pitsillides, Andreas</creatorcontrib><creatorcontrib>Saleem, Muhammad</creatorcontrib><creatorcontrib>Saleem, Umber</creatorcontrib><creatorcontrib>Qureshi, Hassaan Khaliq</creatorcontrib><creatorcontrib>Muhammad, Petros</creatorcontrib><creatorcontrib>Lestas, Marios</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pitsillides, Andreas</au><au>Saleem, Muhammad</au><au>Saleem, Umber</au><au>Qureshi, Hassaan Khaliq</au><au>Muhammad, Petros</au><au>Lestas, Marios</au><au>Rodríguez Pérez, Miguel</au><au>Miguel Rodríguez Pérez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harvested Energy Prediction Schemes for Wireless Sensor Networks: Performance Evaluation and Enhancements</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>We review harvested energy prediction schemes to be used in wireless sensor networks and explore the relative merits of landmark solutions. We propose enhancements to the well-known Profile-Energy (Pro-Energy) model, the so-called Improved Profile-Energy (IPro-Energy), and compare its performance with Accurate Solar Irradiance Prediction Model (ASIM), Pro-Energy, and Weather Conditioned Moving Average (WCMA). The performance metrics considered are the prediction accuracy and the execution time which measure the implementation complexity. In addition, the effectiveness of the considered models, when integrated in an energy management scheme, is also investigated in terms of the achieved throughput and the energy consumption. Both solar irradiance and wind power datasets are used for the evaluation study. Our results indicate that the proposed IPro-Energy scheme outperforms the other candidate models in terms of the prediction accuracy achieved by up to 78% for short term predictions and 50% for medium term prediction horizons. For long term predictions, its prediction accuracy is comparable to the Pro-Energy model but outperforms the other models by up to 64%. In addition, the IPro scheme is able to achieve the highest throughput when integrated in the developed energy management scheme. Finally, the ASIM scheme reports the smallest implementation complexity.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2017/6928325</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7534-3559</orcidid><orcidid>https://orcid.org/0000-0003-3042-4050</orcidid><orcidid>https://orcid.org/0000-0001-7281-6672</orcidid><orcidid>https://orcid.org/0000-0001-5072-2851</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-8669 |
ispartof | Wireless communications and mobile computing, 2017-01, Vol.2017 (2017), p.1-14 |
issn | 1530-8669 1530-8677 |
language | eng |
recordid | cdi_proquest_journals_2407627336 |
source | EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Accuracy Complexity Energy consumption Energy management Internet of Things Irradiance Machine learning Model accuracy Neural networks Performance evaluation Performance measurement Power consumption Prediction models Sensors Stochastic models Weather Wind power Wireless networks Wireless sensor networks |
title | Harvested Energy Prediction Schemes for Wireless Sensor Networks: Performance Evaluation and Enhancements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A09%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harvested%20Energy%20Prediction%20Schemes%20for%20Wireless%20Sensor%20Networks:%20Performance%20Evaluation%20and%20Enhancements&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Pitsillides,%20Andreas&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2017/6928325&rft_dat=%3Cproquest_cross%3E2407627336%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407627336&rft_id=info:pmid/&rfr_iscdi=true |