An I/O-Efficient Buffer Batch Replacement Policy for Update-Intensive Graph Databases

With the proliferation of graph-based applications, such as social network management and Web structure mining, update-intensive graph databases have become an important component of today’s data management platforms. Several techniques have been recently proposed to exploit locality on both data or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Data science and engineering 2016-12, Vol.1 (4), p.231-241
Hauptverfasser: Zhou, Ningnan, Zhou, Xuan, Zhang, Xiao, Wang, Shan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 241
container_issue 4
container_start_page 231
container_title Data science and engineering
container_volume 1
creator Zhou, Ningnan
Zhou, Xuan
Zhang, Xiao
Wang, Shan
description With the proliferation of graph-based applications, such as social network management and Web structure mining, update-intensive graph databases have become an important component of today’s data management platforms. Several techniques have been recently proposed to exploit locality on both data organization and computational model in graph databases. However, little investigation has been conducted on buffer management of graph databases. To the best of our knowledge, current buffer managers of graph databases suffer performance loss caused by unnecessary random I/O access. To solve this problem, we develop a novel batch replacement policy for buffer management. This policy enables us to maximally exploit sequential I/O to improve the performance of graph database. However, trivial solution produces impractical maintenance for replacement plan with maximal sequential I/O. To enable the policy, we first devise a segment tree-based buffer manager to efficiently maintain a optimal replacement plan. Unfortunately, segment tree-based solution becomes bottleneck in multi-core environment. To remedy this weakness, a B-tree-based buffer manager is further proposed. Extensive experiments on real-world and synthetic datasets demonstrate the superiority of our method.
doi_str_mv 10.1007/s41019-016-0026-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407553790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407553790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-2105b988f679bcb0b8a2159f3949688ac329a9596f2c4391d6b35084cf7830c43</originalsourceid><addsrcrecordid>eNp1kEtPAjEUhRujiQT5Ae6auK70Pe0SEJGEBGNk3XRKK0NgZmwHE_69JaNx5eq-vnNucgC4J_iRYFyMEyeYaISJRBhTifQVGFAmOSKCk-vfnihxC0Yp7XGG8sS5HIDNpIbL8RrNQ6hc5esOTk8h-AintnM7-Obbg3X-eDm8NofKnWFoIty0W9t5tKw7X6fqy8NFtO0OPtnOljb5dAdugj0kP_qpQ7B5nr_PXtBqvVjOJivkGCEdogSLUisVZKFLV-JSWUqEDkxzLZWyjlFttdAyUMeZJltZMoEVd6FQDOfVEDz0vm1sPk8-dWbfnGKdXxrKcSEEKzTOFOkpF5uUog-mjdXRxrMh2FwCNH2AJgdoLgEanTW016TM1h8-_jn_L_oG-E9wTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407553790</pqid></control><display><type>article</type><title>An I/O-Efficient Buffer Batch Replacement Policy for Update-Intensive Graph Databases</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><creator>Zhou, Ningnan ; Zhou, Xuan ; Zhang, Xiao ; Wang, Shan</creator><creatorcontrib>Zhou, Ningnan ; Zhou, Xuan ; Zhang, Xiao ; Wang, Shan</creatorcontrib><description>With the proliferation of graph-based applications, such as social network management and Web structure mining, update-intensive graph databases have become an important component of today’s data management platforms. Several techniques have been recently proposed to exploit locality on both data organization and computational model in graph databases. However, little investigation has been conducted on buffer management of graph databases. To the best of our knowledge, current buffer managers of graph databases suffer performance loss caused by unnecessary random I/O access. To solve this problem, we develop a novel batch replacement policy for buffer management. This policy enables us to maximally exploit sequential I/O to improve the performance of graph database. However, trivial solution produces impractical maintenance for replacement plan with maximal sequential I/O. To enable the policy, we first devise a segment tree-based buffer manager to efficiently maintain a optimal replacement plan. Unfortunately, segment tree-based solution becomes bottleneck in multi-core environment. To remedy this weakness, a B-tree-based buffer manager is further proposed. Extensive experiments on real-world and synthetic datasets demonstrate the superiority of our method.</description><identifier>ISSN: 2364-1185</identifier><identifier>EISSN: 2364-1541</identifier><identifier>DOI: 10.1007/s41019-016-0026-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithm Analysis and Problem Complexity ; Artificial Intelligence ; B trees ; Buffers ; Chemistry and Earth Sciences ; Computer Science ; Data management ; Data Mining and Knowledge Discovery ; Database Management ; Performance enhancement ; Physics ; Social networks ; Statistics for Engineering ; Systems and Data Security</subject><ispartof>Data science and engineering, 2016-12, Vol.1 (4), p.231-241</ispartof><rights>The Author(s) 2017</rights><rights>The Author(s) 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-2105b988f679bcb0b8a2159f3949688ac329a9596f2c4391d6b35084cf7830c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s41019-016-0026-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s41019-016-0026-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,27905,27906,41101,42170,51557</link.rule.ids></links><search><creatorcontrib>Zhou, Ningnan</creatorcontrib><creatorcontrib>Zhou, Xuan</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Wang, Shan</creatorcontrib><title>An I/O-Efficient Buffer Batch Replacement Policy for Update-Intensive Graph Databases</title><title>Data science and engineering</title><addtitle>Data Sci. Eng</addtitle><description>With the proliferation of graph-based applications, such as social network management and Web structure mining, update-intensive graph databases have become an important component of today’s data management platforms. Several techniques have been recently proposed to exploit locality on both data organization and computational model in graph databases. However, little investigation has been conducted on buffer management of graph databases. To the best of our knowledge, current buffer managers of graph databases suffer performance loss caused by unnecessary random I/O access. To solve this problem, we develop a novel batch replacement policy for buffer management. This policy enables us to maximally exploit sequential I/O to improve the performance of graph database. However, trivial solution produces impractical maintenance for replacement plan with maximal sequential I/O. To enable the policy, we first devise a segment tree-based buffer manager to efficiently maintain a optimal replacement plan. Unfortunately, segment tree-based solution becomes bottleneck in multi-core environment. To remedy this weakness, a B-tree-based buffer manager is further proposed. Extensive experiments on real-world and synthetic datasets demonstrate the superiority of our method.</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Artificial Intelligence</subject><subject>B trees</subject><subject>Buffers</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Data management</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Performance enhancement</subject><subject>Physics</subject><subject>Social networks</subject><subject>Statistics for Engineering</subject><subject>Systems and Data Security</subject><issn>2364-1185</issn><issn>2364-1541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtPAjEUhRujiQT5Ae6auK70Pe0SEJGEBGNk3XRKK0NgZmwHE_69JaNx5eq-vnNucgC4J_iRYFyMEyeYaISJRBhTifQVGFAmOSKCk-vfnihxC0Yp7XGG8sS5HIDNpIbL8RrNQ6hc5esOTk8h-AintnM7-Obbg3X-eDm8NofKnWFoIty0W9t5tKw7X6fqy8NFtO0OPtnOljb5dAdugj0kP_qpQ7B5nr_PXtBqvVjOJivkGCEdogSLUisVZKFLV-JSWUqEDkxzLZWyjlFttdAyUMeZJltZMoEVd6FQDOfVEDz0vm1sPk8-dWbfnGKdXxrKcSEEKzTOFOkpF5uUog-mjdXRxrMh2FwCNH2AJgdoLgEanTW016TM1h8-_jn_L_oG-E9wTA</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Zhou, Ningnan</creator><creator>Zhou, Xuan</creator><creator>Zhang, Xiao</creator><creator>Wang, Shan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20161201</creationdate><title>An I/O-Efficient Buffer Batch Replacement Policy for Update-Intensive Graph Databases</title><author>Zhou, Ningnan ; Zhou, Xuan ; Zhang, Xiao ; Wang, Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-2105b988f679bcb0b8a2159f3949688ac329a9596f2c4391d6b35084cf7830c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Artificial Intelligence</topic><topic>B trees</topic><topic>Buffers</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Data management</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Performance enhancement</topic><topic>Physics</topic><topic>Social networks</topic><topic>Statistics for Engineering</topic><topic>Systems and Data Security</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Ningnan</creatorcontrib><creatorcontrib>Zhou, Xuan</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Wang, Shan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Data science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Ningnan</au><au>Zhou, Xuan</au><au>Zhang, Xiao</au><au>Wang, Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An I/O-Efficient Buffer Batch Replacement Policy for Update-Intensive Graph Databases</atitle><jtitle>Data science and engineering</jtitle><stitle>Data Sci. Eng</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>1</volume><issue>4</issue><spage>231</spage><epage>241</epage><pages>231-241</pages><issn>2364-1185</issn><eissn>2364-1541</eissn><abstract>With the proliferation of graph-based applications, such as social network management and Web structure mining, update-intensive graph databases have become an important component of today’s data management platforms. Several techniques have been recently proposed to exploit locality on both data organization and computational model in graph databases. However, little investigation has been conducted on buffer management of graph databases. To the best of our knowledge, current buffer managers of graph databases suffer performance loss caused by unnecessary random I/O access. To solve this problem, we develop a novel batch replacement policy for buffer management. This policy enables us to maximally exploit sequential I/O to improve the performance of graph database. However, trivial solution produces impractical maintenance for replacement plan with maximal sequential I/O. To enable the policy, we first devise a segment tree-based buffer manager to efficiently maintain a optimal replacement plan. Unfortunately, segment tree-based solution becomes bottleneck in multi-core environment. To remedy this weakness, a B-tree-based buffer manager is further proposed. Extensive experiments on real-world and synthetic datasets demonstrate the superiority of our method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s41019-016-0026-9</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2364-1185
ispartof Data science and engineering, 2016-12, Vol.1 (4), p.231-241
issn 2364-1185
2364-1541
language eng
recordid cdi_proquest_journals_2407553790
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals
subjects Algorithm Analysis and Problem Complexity
Artificial Intelligence
B trees
Buffers
Chemistry and Earth Sciences
Computer Science
Data management
Data Mining and Knowledge Discovery
Database Management
Performance enhancement
Physics
Social networks
Statistics for Engineering
Systems and Data Security
title An I/O-Efficient Buffer Batch Replacement Policy for Update-Intensive Graph Databases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A33%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20I/O-Efficient%20Buffer%20Batch%20Replacement%20Policy%20for%20Update-Intensive%20Graph%20Databases&rft.jtitle=Data%20science%20and%20engineering&rft.au=Zhou,%20Ningnan&rft.date=2016-12-01&rft.volume=1&rft.issue=4&rft.spage=231&rft.epage=241&rft.pages=231-241&rft.issn=2364-1185&rft.eissn=2364-1541&rft_id=info:doi/10.1007/s41019-016-0026-9&rft_dat=%3Cproquest_cross%3E2407553790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407553790&rft_id=info:pmid/&rfr_iscdi=true