Implementation note on a minimal hybrid lubrication/granular dynamics model for dense suspensions

We describe and summarize a class of minimal numerical models emerged from recent development of simulation methods for dense particle suspensions in overdamped linear flows. The main ingredients include (i) a frame-invariant, short-range lubrication model for spherical particles, and (ii) a soft-co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-05
Hauptverfasser: Ge, Zhouyang, Brandt, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ge, Zhouyang
Brandt, Luca
description We describe and summarize a class of minimal numerical models emerged from recent development of simulation methods for dense particle suspensions in overdamped linear flows. The main ingredients include (i) a frame-invariant, short-range lubrication model for spherical particles, and (ii) a soft-core, stick/slide frictional contact model activated when particles overlap. We implement a version of the model using a modified velocity-Verlet algorithm that explicitly solves the \(N\)-body dynamical system in \(\mathcal{O}(cN)\) operations, where \(c\) is a kernel constant depending on the cutoff of particle interactions. The implementation is validated against literature results on jamming transition and shear thickening suspensions from 40% to 64% volume fractions. Potential strategies to extend the present methodology to non-spherical particles are also suggested for very concentrated suspensions.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2407165008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407165008</sourcerecordid><originalsourceid>FETCH-proquest_journals_24071650083</originalsourceid><addsrcrecordid>eNqNissKwjAUBYMgWLT_cMF1MU362ouie_cl2lRT8qi5yaJ_bxA_wNUczsyKZIzzsugqxjYkR5wopaxpWV3zjIirmbU00gYRlLNgXZCQKMAoq4zQ8FruXg2gY8LjGx2eXtiohYdhscKoB4Jxg9QwunRJixIw4pxGinFH1qPQKPMft2R_Pt2Ol2L27h0lhn5y0dukelbRtmxqSjv-X_UB0IFGWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407165008</pqid></control><display><type>article</type><title>Implementation note on a minimal hybrid lubrication/granular dynamics model for dense suspensions</title><source>Free E- Journals</source><creator>Ge, Zhouyang ; Brandt, Luca</creator><creatorcontrib>Ge, Zhouyang ; Brandt, Luca</creatorcontrib><description>We describe and summarize a class of minimal numerical models emerged from recent development of simulation methods for dense particle suspensions in overdamped linear flows. The main ingredients include (i) a frame-invariant, short-range lubrication model for spherical particles, and (ii) a soft-core, stick/slide frictional contact model activated when particles overlap. We implement a version of the model using a modified velocity-Verlet algorithm that explicitly solves the \(N\)-body dynamical system in \(\mathcal{O}(cN)\) operations, where \(c\) is a kernel constant depending on the cutoff of particle interactions. The implementation is validated against literature results on jamming transition and shear thickening suspensions from 40% to 64% volume fractions. Potential strategies to extend the present methodology to non-spherical particles are also suggested for very concentrated suspensions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computer simulation ; Jamming ; Lubrication ; Numerical models ; Particle interactions ; Shear thickening (liquids) ; Thickening</subject><ispartof>arXiv.org, 2020-05</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Ge, Zhouyang</creatorcontrib><creatorcontrib>Brandt, Luca</creatorcontrib><title>Implementation note on a minimal hybrid lubrication/granular dynamics model for dense suspensions</title><title>arXiv.org</title><description>We describe and summarize a class of minimal numerical models emerged from recent development of simulation methods for dense particle suspensions in overdamped linear flows. The main ingredients include (i) a frame-invariant, short-range lubrication model for spherical particles, and (ii) a soft-core, stick/slide frictional contact model activated when particles overlap. We implement a version of the model using a modified velocity-Verlet algorithm that explicitly solves the \(N\)-body dynamical system in \(\mathcal{O}(cN)\) operations, where \(c\) is a kernel constant depending on the cutoff of particle interactions. The implementation is validated against literature results on jamming transition and shear thickening suspensions from 40% to 64% volume fractions. Potential strategies to extend the present methodology to non-spherical particles are also suggested for very concentrated suspensions.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Jamming</subject><subject>Lubrication</subject><subject>Numerical models</subject><subject>Particle interactions</subject><subject>Shear thickening (liquids)</subject><subject>Thickening</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKwjAUBYMgWLT_cMF1MU362ouie_cl2lRT8qi5yaJ_bxA_wNUczsyKZIzzsugqxjYkR5wopaxpWV3zjIirmbU00gYRlLNgXZCQKMAoq4zQ8FruXg2gY8LjGx2eXtiohYdhscKoB4Jxg9QwunRJixIw4pxGinFH1qPQKPMft2R_Pt2Ol2L27h0lhn5y0dukelbRtmxqSjv-X_UB0IFGWw</recordid><startdate>20200524</startdate><enddate>20200524</enddate><creator>Ge, Zhouyang</creator><creator>Brandt, Luca</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200524</creationdate><title>Implementation note on a minimal hybrid lubrication/granular dynamics model for dense suspensions</title><author>Ge, Zhouyang ; Brandt, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24071650083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Jamming</topic><topic>Lubrication</topic><topic>Numerical models</topic><topic>Particle interactions</topic><topic>Shear thickening (liquids)</topic><topic>Thickening</topic><toplevel>online_resources</toplevel><creatorcontrib>Ge, Zhouyang</creatorcontrib><creatorcontrib>Brandt, Luca</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Zhouyang</au><au>Brandt, Luca</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Implementation note on a minimal hybrid lubrication/granular dynamics model for dense suspensions</atitle><jtitle>arXiv.org</jtitle><date>2020-05-24</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We describe and summarize a class of minimal numerical models emerged from recent development of simulation methods for dense particle suspensions in overdamped linear flows. The main ingredients include (i) a frame-invariant, short-range lubrication model for spherical particles, and (ii) a soft-core, stick/slide frictional contact model activated when particles overlap. We implement a version of the model using a modified velocity-Verlet algorithm that explicitly solves the \(N\)-body dynamical system in \(\mathcal{O}(cN)\) operations, where \(c\) is a kernel constant depending on the cutoff of particle interactions. The implementation is validated against literature results on jamming transition and shear thickening suspensions from 40% to 64% volume fractions. Potential strategies to extend the present methodology to non-spherical particles are also suggested for very concentrated suspensions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2407165008
source Free E- Journals
subjects Algorithms
Computer simulation
Jamming
Lubrication
Numerical models
Particle interactions
Shear thickening (liquids)
Thickening
title Implementation note on a minimal hybrid lubrication/granular dynamics model for dense suspensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A55%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Implementation%20note%20on%20a%20minimal%20hybrid%20lubrication/granular%20dynamics%20model%20for%20dense%20suspensions&rft.jtitle=arXiv.org&rft.au=Ge,%20Zhouyang&rft.date=2020-05-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2407165008%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407165008&rft_id=info:pmid/&rfr_iscdi=true