A 373-F2 0.21%-Native-BER EE SRAM Physically Unclonable Function With 2-D Power-Gated Bit Cells and } Bias-Based Dark-Bit Detection
This article presents a highly stable SRAM-based physically unclonable function (PUF) using enhancement-enhancement (EE)-structure bit cells for native stability improvement. The PUF bit cells are power-gated 2-D and are normally in the OFF state, which largely reduces power and is beneficial to att...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2020-06, Vol.55 (6), p.1719-1732 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1732 |
---|---|
container_issue | 6 |
container_start_page | 1719 |
container_title | IEEE journal of solid-state circuits |
container_volume | 55 |
creator | Liu, Kunyang Min, Yue Yang, Xuan Sun, Hanfeng Shinohara, Hirofumi |
description | This article presents a highly stable SRAM-based physically unclonable function (PUF) using enhancement-enhancement (EE)-structure bit cells for native stability improvement. The PUF bit cells are power-gated 2-D and are normally in the OFF state, which largely reduces power and is beneficial to attack tolerance. In addition, a dark-bit detection technique based on a lightweight integrated {V}_{\text {SS}} -bias generator is implemented in order to screen out potentially unstable bit cells (dark bits) induced by supply voltage/temperature (VT) variations and other factors. Measured native bit error rate (BER) of prototype chips fabricated in 130-nm standard CMOS is 0.21% at 0.8 V and 23 °C, which is 14 \times better compared with the conventional SRAM-based PUF. After masking the detected dark bits, no bit error (3339 bits \times 500 evaluations) appeared at the worst VT corner across 0.8 to 1.4 V and −40 °C to 120 °C. This technique also eliminated all unstable bits in the accelerated aging test. Both the data before and after dark-bit masking have passed all applicable NIST SP 800-22 randomness tests. The measured operational energy at 0.8 V is 128 fJ/bit and the standby power is 0.44 pW/bit, thanks to the 2-D power-gating scheme. The nMOS-only bit cell is highly compact, with a normalized bit cell area of 373 F 2 . |
doi_str_mv | 10.1109/JSSC.2019.2963002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2407039928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8957039</ieee_id><sourcerecordid>2407039928</sourcerecordid><originalsourceid>FETCH-LOGICAL-i488-e6507e4032cebd8b89efd1d1c06812638c32c34956de0822a0e1fdede5e47abd3</originalsourceid><addsrcrecordid>eNotjctOwzAURC0EEqXwAYiNJcTS4drOw172kRZQgaotgl3kxLeqS0hKkoK6YMWPkwKr0egczRByzsHjHPT13Xw-8ARw7QkdSgBxQDo8CBTjkXw5JB0ArpgWAMfkpK7XbfV9xTvku0dlJNlIUPAEv2IPpnEfyPrxjMYxnc9693S62tUuM3m-o09FlpeFSXOko22RNa4s6LNrVlSwIZ2Wn1ixsWnQ0r5r6ADzvKamsPSr7aZmfVO3aGiqV7bnQ2zwd-KUHC1NXuPZf3bJYhQvBjds8ji-HfQmzPlKMQwDiNAHKTJMrUqVxqXllmcQKi5CqbKWSF8HoUVQQhhAvrRoMUA_MqmVXXL5N7upyvct1k2yLrdV0T4mwocIpNZCtdbFn-UQMdlU7s1Uu0TpYC_IH6cWZys</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407039928</pqid></control><display><type>article</type><title>A 373-F2 0.21%-Native-BER EE SRAM Physically Unclonable Function With 2-D Power-Gated Bit Cells and } Bias-Based Dark-Bit Detection</title><source>IEEE Electronic Library Online</source><creator>Liu, Kunyang ; Min, Yue ; Yang, Xuan ; Sun, Hanfeng ; Shinohara, Hirofumi</creator><creatorcontrib>Liu, Kunyang ; Min, Yue ; Yang, Xuan ; Sun, Hanfeng ; Shinohara, Hirofumi</creatorcontrib><description><![CDATA[This article presents a highly stable SRAM-based physically unclonable function (PUF) using enhancement-enhancement (EE)-structure bit cells for native stability improvement. The PUF bit cells are power-gated 2-D and are normally in the OFF state, which largely reduces power and is beneficial to attack tolerance. In addition, a dark-bit detection technique based on a lightweight integrated <inline-formula> <tex-math notation="LaTeX">{V}_{\text {SS}} </tex-math></inline-formula>-bias generator is implemented in order to screen out potentially unstable bit cells (dark bits) induced by supply voltage/temperature (VT) variations and other factors. Measured native bit error rate (BER) of prototype chips fabricated in 130-nm standard CMOS is 0.21% at 0.8 V and 23 °C, which is 14<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> better compared with the conventional SRAM-based PUF. After masking the detected dark bits, no bit error (3339 bits <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> 500 evaluations) appeared at the worst VT corner across 0.8 to 1.4 V and −40 °C to 120 °C. This technique also eliminated all unstable bits in the accelerated aging test. Both the data before and after dark-bit masking have passed all applicable NIST SP 800-22 randomness tests. The measured operational energy at 0.8 V is 128 fJ/bit and the standby power is 0.44 pW/bit, thanks to the 2-D power-gating scheme. The nMOS-only bit cell is highly compact, with a normalized bit cell area of 373 F 2 .]]></description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2019.2963002</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerated aging tests ; Accelerated tests ; Bias ; Bit error rate ; Chip formation ; Circuit stability ; CMOS ; Dark-bit masking ; enhancement-enhancement (EE) SRAM ; Error analysis ; hardware security ; Internet-of-Things (IoT) ; Inverters ; Masking ; Metal oxide semiconductors ; physically unclonable function (PUF) ; power gating ; Random access memory ; Security ; Stability analysis ; Static random access memory ; Thermal stability ; Transistors</subject><ispartof>IEEE journal of solid-state circuits, 2020-06, Vol.55 (6), p.1719-1732</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5589-8397 ; 0000-0002-9328-7076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8957039$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8957039$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Kunyang</creatorcontrib><creatorcontrib>Min, Yue</creatorcontrib><creatorcontrib>Yang, Xuan</creatorcontrib><creatorcontrib>Sun, Hanfeng</creatorcontrib><creatorcontrib>Shinohara, Hirofumi</creatorcontrib><title>A 373-F2 0.21%-Native-BER EE SRAM Physically Unclonable Function With 2-D Power-Gated Bit Cells and } Bias-Based Dark-Bit Detection</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description><![CDATA[This article presents a highly stable SRAM-based physically unclonable function (PUF) using enhancement-enhancement (EE)-structure bit cells for native stability improvement. The PUF bit cells are power-gated 2-D and are normally in the OFF state, which largely reduces power and is beneficial to attack tolerance. In addition, a dark-bit detection technique based on a lightweight integrated <inline-formula> <tex-math notation="LaTeX">{V}_{\text {SS}} </tex-math></inline-formula>-bias generator is implemented in order to screen out potentially unstable bit cells (dark bits) induced by supply voltage/temperature (VT) variations and other factors. Measured native bit error rate (BER) of prototype chips fabricated in 130-nm standard CMOS is 0.21% at 0.8 V and 23 °C, which is 14<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> better compared with the conventional SRAM-based PUF. After masking the detected dark bits, no bit error (3339 bits <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> 500 evaluations) appeared at the worst VT corner across 0.8 to 1.4 V and −40 °C to 120 °C. This technique also eliminated all unstable bits in the accelerated aging test. Both the data before and after dark-bit masking have passed all applicable NIST SP 800-22 randomness tests. The measured operational energy at 0.8 V is 128 fJ/bit and the standby power is 0.44 pW/bit, thanks to the 2-D power-gating scheme. The nMOS-only bit cell is highly compact, with a normalized bit cell area of 373 F 2 .]]></description><subject>Accelerated aging tests</subject><subject>Accelerated tests</subject><subject>Bias</subject><subject>Bit error rate</subject><subject>Chip formation</subject><subject>Circuit stability</subject><subject>CMOS</subject><subject>Dark-bit masking</subject><subject>enhancement-enhancement (EE) SRAM</subject><subject>Error analysis</subject><subject>hardware security</subject><subject>Internet-of-Things (IoT)</subject><subject>Inverters</subject><subject>Masking</subject><subject>Metal oxide semiconductors</subject><subject>physically unclonable function (PUF)</subject><subject>power gating</subject><subject>Random access memory</subject><subject>Security</subject><subject>Stability analysis</subject><subject>Static random access memory</subject><subject>Thermal stability</subject><subject>Transistors</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjctOwzAURC0EEqXwAYiNJcTS4drOw172kRZQgaotgl3kxLeqS0hKkoK6YMWPkwKr0egczRByzsHjHPT13Xw-8ARw7QkdSgBxQDo8CBTjkXw5JB0ArpgWAMfkpK7XbfV9xTvku0dlJNlIUPAEv2IPpnEfyPrxjMYxnc9693S62tUuM3m-o09FlpeFSXOko22RNa4s6LNrVlSwIZ2Wn1ixsWnQ0r5r6ADzvKamsPSr7aZmfVO3aGiqV7bnQ2zwd-KUHC1NXuPZf3bJYhQvBjds8ji-HfQmzPlKMQwDiNAHKTJMrUqVxqXllmcQKi5CqbKWSF8HoUVQQhhAvrRoMUA_MqmVXXL5N7upyvct1k2yLrdV0T4mwocIpNZCtdbFn-UQMdlU7s1Uu0TpYC_IH6cWZys</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Liu, Kunyang</creator><creator>Min, Yue</creator><creator>Yang, Xuan</creator><creator>Sun, Hanfeng</creator><creator>Shinohara, Hirofumi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5589-8397</orcidid><orcidid>https://orcid.org/0000-0002-9328-7076</orcidid></search><sort><creationdate>202006</creationdate><title>A 373-F2 0.21%-Native-BER EE SRAM Physically Unclonable Function With 2-D Power-Gated Bit Cells and } Bias-Based Dark-Bit Detection</title><author>Liu, Kunyang ; Min, Yue ; Yang, Xuan ; Sun, Hanfeng ; Shinohara, Hirofumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i488-e6507e4032cebd8b89efd1d1c06812638c32c34956de0822a0e1fdede5e47abd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerated aging tests</topic><topic>Accelerated tests</topic><topic>Bias</topic><topic>Bit error rate</topic><topic>Chip formation</topic><topic>Circuit stability</topic><topic>CMOS</topic><topic>Dark-bit masking</topic><topic>enhancement-enhancement (EE) SRAM</topic><topic>Error analysis</topic><topic>hardware security</topic><topic>Internet-of-Things (IoT)</topic><topic>Inverters</topic><topic>Masking</topic><topic>Metal oxide semiconductors</topic><topic>physically unclonable function (PUF)</topic><topic>power gating</topic><topic>Random access memory</topic><topic>Security</topic><topic>Stability analysis</topic><topic>Static random access memory</topic><topic>Thermal stability</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kunyang</creatorcontrib><creatorcontrib>Min, Yue</creatorcontrib><creatorcontrib>Yang, Xuan</creatorcontrib><creatorcontrib>Sun, Hanfeng</creatorcontrib><creatorcontrib>Shinohara, Hirofumi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Kunyang</au><au>Min, Yue</au><au>Yang, Xuan</au><au>Sun, Hanfeng</au><au>Shinohara, Hirofumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 373-F2 0.21%-Native-BER EE SRAM Physically Unclonable Function With 2-D Power-Gated Bit Cells and } Bias-Based Dark-Bit Detection</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2020-06</date><risdate>2020</risdate><volume>55</volume><issue>6</issue><spage>1719</spage><epage>1732</epage><pages>1719-1732</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract><![CDATA[This article presents a highly stable SRAM-based physically unclonable function (PUF) using enhancement-enhancement (EE)-structure bit cells for native stability improvement. The PUF bit cells are power-gated 2-D and are normally in the OFF state, which largely reduces power and is beneficial to attack tolerance. In addition, a dark-bit detection technique based on a lightweight integrated <inline-formula> <tex-math notation="LaTeX">{V}_{\text {SS}} </tex-math></inline-formula>-bias generator is implemented in order to screen out potentially unstable bit cells (dark bits) induced by supply voltage/temperature (VT) variations and other factors. Measured native bit error rate (BER) of prototype chips fabricated in 130-nm standard CMOS is 0.21% at 0.8 V and 23 °C, which is 14<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> better compared with the conventional SRAM-based PUF. After masking the detected dark bits, no bit error (3339 bits <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> 500 evaluations) appeared at the worst VT corner across 0.8 to 1.4 V and −40 °C to 120 °C. This technique also eliminated all unstable bits in the accelerated aging test. Both the data before and after dark-bit masking have passed all applicable NIST SP 800-22 randomness tests. The measured operational energy at 0.8 V is 128 fJ/bit and the standby power is 0.44 pW/bit, thanks to the 2-D power-gating scheme. The nMOS-only bit cell is highly compact, with a normalized bit cell area of 373 F 2 .]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2019.2963002</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5589-8397</orcidid><orcidid>https://orcid.org/0000-0002-9328-7076</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2020-06, Vol.55 (6), p.1719-1732 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_proquest_journals_2407039928 |
source | IEEE Electronic Library Online |
subjects | Accelerated aging tests Accelerated tests Bias Bit error rate Chip formation Circuit stability CMOS Dark-bit masking enhancement-enhancement (EE) SRAM Error analysis hardware security Internet-of-Things (IoT) Inverters Masking Metal oxide semiconductors physically unclonable function (PUF) power gating Random access memory Security Stability analysis Static random access memory Thermal stability Transistors |
title | A 373-F2 0.21%-Native-BER EE SRAM Physically Unclonable Function With 2-D Power-Gated Bit Cells and } Bias-Based Dark-Bit Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A19%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20373-F2%200.21%25-Native-BER%20EE%20SRAM%20Physically%20Unclonable%20Function%20With%202-D%20Power-Gated%20Bit%20Cells%20and%20%7D%20Bias-Based%20Dark-Bit%20Detection&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Liu,%20Kunyang&rft.date=2020-06&rft.volume=55&rft.issue=6&rft.spage=1719&rft.epage=1732&rft.pages=1719-1732&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2019.2963002&rft_dat=%3Cproquest_RIE%3E2407039928%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407039928&rft_id=info:pmid/&rft_ieee_id=8957039&rfr_iscdi=true |