Towards online data-driven prognostics system
Complex engineering systems are always working in harsh operating conditions. Internal wears and tears of such systems can lead to catastrophic failures which affect system operation and endanger human lives in many cases. To avoid sudden failures, continuous monitoring, fault diagnosis, and failure...
Gespeichert in:
Veröffentlicht in: | Complex & intelligent systems 2018-12, Vol.4 (4), p.271-282 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 282 |
---|---|
container_issue | 4 |
container_start_page | 271 |
container_title | Complex & intelligent systems |
container_volume | 4 |
creator | Elattar, Hatem M. Elminir, Hamdy K. Riad, A. M. |
description | Complex engineering systems are always working in harsh operating conditions. Internal wears and tears of such systems can lead to catastrophic failures which affect system operation and endanger human lives in many cases. To avoid sudden failures, continuous monitoring, fault diagnosis, and failure prognosis are required. Prognostics as a discipline plays the major rule in impending failure prevention. Offline prognostics system focuses on maintenance and logistics operations whereas online prognostics focuses on maintaining safe operation. In a previous work we successfully developed an offline prognostics system for aircraft turbofan engines’ remaining useful life (RUL) estimation. In this paper we will show how we used the offline prognostics system as the baseline definition towards creating an online data-driven prognostics system to enable informed real-time decisions. |
doi_str_mv | 10.1007/s40747-018-0082-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407027009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407027009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-7d711a651e8f68e7d1d425419ee4848550b0af429ae8cb6df1d3368fb368f8713</originalsourceid><addsrcrecordid>eNp1kE9PwzAMxSMEEtPYB-BWiXPATtMmPaKJP5MmcRnnKG3SqdPWjLgDbZ-ejCJx4mL78N6z_WPsFuEeAdQDSVBScUDNAbTgpws2EVhpXkKRX_7MFZdFXl6zGdEGAFApnYOYML4KXzY6ykK_7XqfOTtY7mL36ftsH8O6DzR0DWV0pMHvbthVa7fkZ799yt6fn1bzV758e1nMH5e8EboauHIK0ZYFet2W2iuHTopCYuW91FIXBdRgWykq63VTl65Fl-elbutz0QrzKbsbc9MJHwdPg9mEQ-zTSiPSryAUQJVUOKqaGIiib80-djsbjwbBnMGYEYxJYMwZjDkljxg9lLT92se_5P9N3xGtZP4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407027009</pqid></control><display><type>article</type><title>Towards online data-driven prognostics system</title><source>Springer Nature - Complete Springer Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA/Free Journals</source><creator>Elattar, Hatem M. ; Elminir, Hamdy K. ; Riad, A. M.</creator><creatorcontrib>Elattar, Hatem M. ; Elminir, Hamdy K. ; Riad, A. M.</creatorcontrib><description>Complex engineering systems are always working in harsh operating conditions. Internal wears and tears of such systems can lead to catastrophic failures which affect system operation and endanger human lives in many cases. To avoid sudden failures, continuous monitoring, fault diagnosis, and failure prognosis are required. Prognostics as a discipline plays the major rule in impending failure prevention. Offline prognostics system focuses on maintenance and logistics operations whereas online prognostics focuses on maintaining safe operation. In a previous work we successfully developed an offline prognostics system for aircraft turbofan engines’ remaining useful life (RUL) estimation. In this paper we will show how we used the offline prognostics system as the baseline definition towards creating an online data-driven prognostics system to enable informed real-time decisions.</description><identifier>ISSN: 2199-4536</identifier><identifier>EISSN: 2198-6053</identifier><identifier>DOI: 10.1007/s40747-018-0082-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aircraft engines ; Complexity ; Computational Intelligence ; Data Structures and Information Theory ; Engineering ; Failure prevention ; Fault diagnosis ; Logistics ; On-line systems ; Original Article ; Turbofan engines</subject><ispartof>Complex & intelligent systems, 2018-12, Vol.4 (4), p.271-282</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-7d711a651e8f68e7d1d425419ee4848550b0af429ae8cb6df1d3368fb368f8713</citedby><cites>FETCH-LOGICAL-c289t-7d711a651e8f68e7d1d425419ee4848550b0af429ae8cb6df1d3368fb368f8713</cites><orcidid>0000-0003-3735-8666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40747-018-0082-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s40747-018-0082-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27901,27902,41096,41464,42165,42533,51294,51551</link.rule.ids></links><search><creatorcontrib>Elattar, Hatem M.</creatorcontrib><creatorcontrib>Elminir, Hamdy K.</creatorcontrib><creatorcontrib>Riad, A. M.</creatorcontrib><title>Towards online data-driven prognostics system</title><title>Complex & intelligent systems</title><addtitle>Complex Intell. Syst</addtitle><description>Complex engineering systems are always working in harsh operating conditions. Internal wears and tears of such systems can lead to catastrophic failures which affect system operation and endanger human lives in many cases. To avoid sudden failures, continuous monitoring, fault diagnosis, and failure prognosis are required. Prognostics as a discipline plays the major rule in impending failure prevention. Offline prognostics system focuses on maintenance and logistics operations whereas online prognostics focuses on maintaining safe operation. In a previous work we successfully developed an offline prognostics system for aircraft turbofan engines’ remaining useful life (RUL) estimation. In this paper we will show how we used the offline prognostics system as the baseline definition towards creating an online data-driven prognostics system to enable informed real-time decisions.</description><subject>Aircraft engines</subject><subject>Complexity</subject><subject>Computational Intelligence</subject><subject>Data Structures and Information Theory</subject><subject>Engineering</subject><subject>Failure prevention</subject><subject>Fault diagnosis</subject><subject>Logistics</subject><subject>On-line systems</subject><subject>Original Article</subject><subject>Turbofan engines</subject><issn>2199-4536</issn><issn>2198-6053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kE9PwzAMxSMEEtPYB-BWiXPATtMmPaKJP5MmcRnnKG3SqdPWjLgDbZ-ejCJx4mL78N6z_WPsFuEeAdQDSVBScUDNAbTgpws2EVhpXkKRX_7MFZdFXl6zGdEGAFApnYOYML4KXzY6ykK_7XqfOTtY7mL36ftsH8O6DzR0DWV0pMHvbthVa7fkZ799yt6fn1bzV758e1nMH5e8EboauHIK0ZYFet2W2iuHTopCYuW91FIXBdRgWykq63VTl65Fl-elbutz0QrzKbsbc9MJHwdPg9mEQ-zTSiPSryAUQJVUOKqaGIiib80-djsbjwbBnMGYEYxJYMwZjDkljxg9lLT92se_5P9N3xGtZP4</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Elattar, Hatem M.</creator><creator>Elminir, Hamdy K.</creator><creator>Riad, A. M.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-3735-8666</orcidid></search><sort><creationdate>20181201</creationdate><title>Towards online data-driven prognostics system</title><author>Elattar, Hatem M. ; Elminir, Hamdy K. ; Riad, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-7d711a651e8f68e7d1d425419ee4848550b0af429ae8cb6df1d3368fb368f8713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aircraft engines</topic><topic>Complexity</topic><topic>Computational Intelligence</topic><topic>Data Structures and Information Theory</topic><topic>Engineering</topic><topic>Failure prevention</topic><topic>Fault diagnosis</topic><topic>Logistics</topic><topic>On-line systems</topic><topic>Original Article</topic><topic>Turbofan engines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elattar, Hatem M.</creatorcontrib><creatorcontrib>Elminir, Hamdy K.</creatorcontrib><creatorcontrib>Riad, A. M.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Complex & intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elattar, Hatem M.</au><au>Elminir, Hamdy K.</au><au>Riad, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards online data-driven prognostics system</atitle><jtitle>Complex & intelligent systems</jtitle><stitle>Complex Intell. Syst</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>4</volume><issue>4</issue><spage>271</spage><epage>282</epage><pages>271-282</pages><issn>2199-4536</issn><eissn>2198-6053</eissn><abstract>Complex engineering systems are always working in harsh operating conditions. Internal wears and tears of such systems can lead to catastrophic failures which affect system operation and endanger human lives in many cases. To avoid sudden failures, continuous monitoring, fault diagnosis, and failure prognosis are required. Prognostics as a discipline plays the major rule in impending failure prevention. Offline prognostics system focuses on maintenance and logistics operations whereas online prognostics focuses on maintaining safe operation. In a previous work we successfully developed an offline prognostics system for aircraft turbofan engines’ remaining useful life (RUL) estimation. In this paper we will show how we used the offline prognostics system as the baseline definition towards creating an online data-driven prognostics system to enable informed real-time decisions.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40747-018-0082-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3735-8666</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2199-4536 |
ispartof | Complex & intelligent systems, 2018-12, Vol.4 (4), p.271-282 |
issn | 2199-4536 2198-6053 |
language | eng |
recordid | cdi_proquest_journals_2407027009 |
source | Springer Nature - Complete Springer Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA/Free Journals |
subjects | Aircraft engines Complexity Computational Intelligence Data Structures and Information Theory Engineering Failure prevention Fault diagnosis Logistics On-line systems Original Article Turbofan engines |
title | Towards online data-driven prognostics system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A58%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20online%20data-driven%20prognostics%20system&rft.jtitle=Complex%20&%20intelligent%20systems&rft.au=Elattar,%20Hatem%20M.&rft.date=2018-12-01&rft.volume=4&rft.issue=4&rft.spage=271&rft.epage=282&rft.pages=271-282&rft.issn=2199-4536&rft.eissn=2198-6053&rft_id=info:doi/10.1007/s40747-018-0082-z&rft_dat=%3Cproquest_cross%3E2407027009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407027009&rft_id=info:pmid/&rfr_iscdi=true |