Towards online data-driven prognostics system

Complex engineering systems are always working in harsh operating conditions. Internal wears and tears of such systems can lead to catastrophic failures which affect system operation and endanger human lives in many cases. To avoid sudden failures, continuous monitoring, fault diagnosis, and failure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex & intelligent systems 2018-12, Vol.4 (4), p.271-282
Hauptverfasser: Elattar, Hatem M., Elminir, Hamdy K., Riad, A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 282
container_issue 4
container_start_page 271
container_title Complex & intelligent systems
container_volume 4
creator Elattar, Hatem M.
Elminir, Hamdy K.
Riad, A. M.
description Complex engineering systems are always working in harsh operating conditions. Internal wears and tears of such systems can lead to catastrophic failures which affect system operation and endanger human lives in many cases. To avoid sudden failures, continuous monitoring, fault diagnosis, and failure prognosis are required. Prognostics as a discipline plays the major rule in impending failure prevention. Offline prognostics system focuses on maintenance and logistics operations whereas online prognostics focuses on maintaining safe operation. In a previous work we successfully developed an offline prognostics system for aircraft turbofan engines’ remaining useful life (RUL) estimation. In this paper we will show how we used the offline prognostics system as the baseline definition towards creating an online data-driven prognostics system to enable informed real-time decisions.
doi_str_mv 10.1007/s40747-018-0082-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2407027009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407027009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-7d711a651e8f68e7d1d425419ee4848550b0af429ae8cb6df1d3368fb368f8713</originalsourceid><addsrcrecordid>eNp1kE9PwzAMxSMEEtPYB-BWiXPATtMmPaKJP5MmcRnnKG3SqdPWjLgDbZ-ejCJx4mL78N6z_WPsFuEeAdQDSVBScUDNAbTgpws2EVhpXkKRX_7MFZdFXl6zGdEGAFApnYOYML4KXzY6ykK_7XqfOTtY7mL36ftsH8O6DzR0DWV0pMHvbthVa7fkZ799yt6fn1bzV758e1nMH5e8EboauHIK0ZYFet2W2iuHTopCYuW91FIXBdRgWykq63VTl65Fl-elbutz0QrzKbsbc9MJHwdPg9mEQ-zTSiPSryAUQJVUOKqaGIiib80-djsbjwbBnMGYEYxJYMwZjDkljxg9lLT92se_5P9N3xGtZP4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407027009</pqid></control><display><type>article</type><title>Towards online data-driven prognostics system</title><source>Springer Nature - Complete Springer Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA/Free Journals</source><creator>Elattar, Hatem M. ; Elminir, Hamdy K. ; Riad, A. M.</creator><creatorcontrib>Elattar, Hatem M. ; Elminir, Hamdy K. ; Riad, A. M.</creatorcontrib><description>Complex engineering systems are always working in harsh operating conditions. Internal wears and tears of such systems can lead to catastrophic failures which affect system operation and endanger human lives in many cases. To avoid sudden failures, continuous monitoring, fault diagnosis, and failure prognosis are required. Prognostics as a discipline plays the major rule in impending failure prevention. Offline prognostics system focuses on maintenance and logistics operations whereas online prognostics focuses on maintaining safe operation. In a previous work we successfully developed an offline prognostics system for aircraft turbofan engines’ remaining useful life (RUL) estimation. In this paper we will show how we used the offline prognostics system as the baseline definition towards creating an online data-driven prognostics system to enable informed real-time decisions.</description><identifier>ISSN: 2199-4536</identifier><identifier>EISSN: 2198-6053</identifier><identifier>DOI: 10.1007/s40747-018-0082-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aircraft engines ; Complexity ; Computational Intelligence ; Data Structures and Information Theory ; Engineering ; Failure prevention ; Fault diagnosis ; Logistics ; On-line systems ; Original Article ; Turbofan engines</subject><ispartof>Complex &amp; intelligent systems, 2018-12, Vol.4 (4), p.271-282</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-7d711a651e8f68e7d1d425419ee4848550b0af429ae8cb6df1d3368fb368f8713</citedby><cites>FETCH-LOGICAL-c289t-7d711a651e8f68e7d1d425419ee4848550b0af429ae8cb6df1d3368fb368f8713</cites><orcidid>0000-0003-3735-8666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40747-018-0082-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s40747-018-0082-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27901,27902,41096,41464,42165,42533,51294,51551</link.rule.ids></links><search><creatorcontrib>Elattar, Hatem M.</creatorcontrib><creatorcontrib>Elminir, Hamdy K.</creatorcontrib><creatorcontrib>Riad, A. M.</creatorcontrib><title>Towards online data-driven prognostics system</title><title>Complex &amp; intelligent systems</title><addtitle>Complex Intell. Syst</addtitle><description>Complex engineering systems are always working in harsh operating conditions. Internal wears and tears of such systems can lead to catastrophic failures which affect system operation and endanger human lives in many cases. To avoid sudden failures, continuous monitoring, fault diagnosis, and failure prognosis are required. Prognostics as a discipline plays the major rule in impending failure prevention. Offline prognostics system focuses on maintenance and logistics operations whereas online prognostics focuses on maintaining safe operation. In a previous work we successfully developed an offline prognostics system for aircraft turbofan engines’ remaining useful life (RUL) estimation. In this paper we will show how we used the offline prognostics system as the baseline definition towards creating an online data-driven prognostics system to enable informed real-time decisions.</description><subject>Aircraft engines</subject><subject>Complexity</subject><subject>Computational Intelligence</subject><subject>Data Structures and Information Theory</subject><subject>Engineering</subject><subject>Failure prevention</subject><subject>Fault diagnosis</subject><subject>Logistics</subject><subject>On-line systems</subject><subject>Original Article</subject><subject>Turbofan engines</subject><issn>2199-4536</issn><issn>2198-6053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kE9PwzAMxSMEEtPYB-BWiXPATtMmPaKJP5MmcRnnKG3SqdPWjLgDbZ-ejCJx4mL78N6z_WPsFuEeAdQDSVBScUDNAbTgpws2EVhpXkKRX_7MFZdFXl6zGdEGAFApnYOYML4KXzY6ykK_7XqfOTtY7mL36ftsH8O6DzR0DWV0pMHvbthVa7fkZ799yt6fn1bzV758e1nMH5e8EboauHIK0ZYFet2W2iuHTopCYuW91FIXBdRgWykq63VTl65Fl-elbutz0QrzKbsbc9MJHwdPg9mEQ-zTSiPSryAUQJVUOKqaGIiib80-djsbjwbBnMGYEYxJYMwZjDkljxg9lLT92se_5P9N3xGtZP4</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Elattar, Hatem M.</creator><creator>Elminir, Hamdy K.</creator><creator>Riad, A. M.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-3735-8666</orcidid></search><sort><creationdate>20181201</creationdate><title>Towards online data-driven prognostics system</title><author>Elattar, Hatem M. ; Elminir, Hamdy K. ; Riad, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-7d711a651e8f68e7d1d425419ee4848550b0af429ae8cb6df1d3368fb368f8713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aircraft engines</topic><topic>Complexity</topic><topic>Computational Intelligence</topic><topic>Data Structures and Information Theory</topic><topic>Engineering</topic><topic>Failure prevention</topic><topic>Fault diagnosis</topic><topic>Logistics</topic><topic>On-line systems</topic><topic>Original Article</topic><topic>Turbofan engines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elattar, Hatem M.</creatorcontrib><creatorcontrib>Elminir, Hamdy K.</creatorcontrib><creatorcontrib>Riad, A. M.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Complex &amp; intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elattar, Hatem M.</au><au>Elminir, Hamdy K.</au><au>Riad, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards online data-driven prognostics system</atitle><jtitle>Complex &amp; intelligent systems</jtitle><stitle>Complex Intell. Syst</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>4</volume><issue>4</issue><spage>271</spage><epage>282</epage><pages>271-282</pages><issn>2199-4536</issn><eissn>2198-6053</eissn><abstract>Complex engineering systems are always working in harsh operating conditions. Internal wears and tears of such systems can lead to catastrophic failures which affect system operation and endanger human lives in many cases. To avoid sudden failures, continuous monitoring, fault diagnosis, and failure prognosis are required. Prognostics as a discipline plays the major rule in impending failure prevention. Offline prognostics system focuses on maintenance and logistics operations whereas online prognostics focuses on maintaining safe operation. In a previous work we successfully developed an offline prognostics system for aircraft turbofan engines’ remaining useful life (RUL) estimation. In this paper we will show how we used the offline prognostics system as the baseline definition towards creating an online data-driven prognostics system to enable informed real-time decisions.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40747-018-0082-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3735-8666</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2199-4536
ispartof Complex & intelligent systems, 2018-12, Vol.4 (4), p.271-282
issn 2199-4536
2198-6053
language eng
recordid cdi_proquest_journals_2407027009
source Springer Nature - Complete Springer Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA/Free Journals
subjects Aircraft engines
Complexity
Computational Intelligence
Data Structures and Information Theory
Engineering
Failure prevention
Fault diagnosis
Logistics
On-line systems
Original Article
Turbofan engines
title Towards online data-driven prognostics system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A58%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20online%20data-driven%20prognostics%20system&rft.jtitle=Complex%20&%20intelligent%20systems&rft.au=Elattar,%20Hatem%20M.&rft.date=2018-12-01&rft.volume=4&rft.issue=4&rft.spage=271&rft.epage=282&rft.pages=271-282&rft.issn=2199-4536&rft.eissn=2198-6053&rft_id=info:doi/10.1007/s40747-018-0082-z&rft_dat=%3Cproquest_cross%3E2407027009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407027009&rft_id=info:pmid/&rfr_iscdi=true