Modeling renewable energy usage with hesitant Fuzzy cognitive map

Renewable energy sources (solar, wind, tidal, etc.), which are unlimited and have a fair distribution in the world, are an alternative to the depleting fossil fuels (coil, petroleum, natural gas, etc.). It is necessary to identify the right technologies and methods to make more effective use of rene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex & intelligent systems 2017-10, Vol.3 (3), p.155-166
Hauptverfasser: Çoban, Veysel, Onar, Sezi Çevik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 166
container_issue 3
container_start_page 155
container_title Complex & intelligent systems
container_volume 3
creator Çoban, Veysel
Onar, Sezi Çevik
description Renewable energy sources (solar, wind, tidal, etc.), which are unlimited and have a fair distribution in the world, are an alternative to the depleting fossil fuels (coil, petroleum, natural gas, etc.). It is necessary to identify the right technologies and methods to make more effective use of renewable energy sources including uncertainty and irregularity in resource creation. In this study, dynamic environmental factors affecting the production of solar and wind energy are defined and the relations among them are linguistically expressed by the experts. These linguistic relationships among factors and their initial states are assessed by new developed hesitant linguistic cognitive map method that is an extension of hesitant fuzzy sets and fuzzy cognitive map. Relational development between factors was observed by simulating the model according to the initial condition of the factors. Thus, the model helps investors and governments to direct their solar and wind energy investment decisions.
doi_str_mv 10.1007/s40747-017-0043-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2406973245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406973245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-55c395f8007013f11cc9088497a851a6460967d17ecee837c2461167477a8ccf3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIVKUfwM0SZ8P6ET-OVUUBqYgLnC3jOmmqNil2QpV-PYYgceKw2jnMzO4MQtcUbimAuksClFAEaB4QnAxnaMKo0URCwc9_sCGi4PISzVLaAmSm0hzYBM2f23XY1U2FY2jC0b3vAs4gVgPuk6sCPtbdBm9CqjvXdHjZn04D9m3V1F39GfDeHa7QRel2Kcx-9xS9Le9fF49k9fLwtJiviGfadKQoPDdFqfO_QHlJqfcGtBZGOV1QJ4UEI9WaquBD0Fx5JiSlMufKBO9LPkU3o-8hth99SJ3dtn1s8knLBEijOMsRp4iOLB_blGIo7SHWexcHS8F-l2XHsmyuwH6XZYesYaMmZW5Thfjn_L_oCwzPa1E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406973245</pqid></control><display><type>article</type><title>Modeling renewable energy usage with hesitant Fuzzy cognitive map</title><source>Springer Nature - Complete Springer Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><creator>Çoban, Veysel ; Onar, Sezi Çevik</creator><creatorcontrib>Çoban, Veysel ; Onar, Sezi Çevik</creatorcontrib><description>Renewable energy sources (solar, wind, tidal, etc.), which are unlimited and have a fair distribution in the world, are an alternative to the depleting fossil fuels (coil, petroleum, natural gas, etc.). It is necessary to identify the right technologies and methods to make more effective use of renewable energy sources including uncertainty and irregularity in resource creation. In this study, dynamic environmental factors affecting the production of solar and wind energy are defined and the relations among them are linguistically expressed by the experts. These linguistic relationships among factors and their initial states are assessed by new developed hesitant linguistic cognitive map method that is an extension of hesitant fuzzy sets and fuzzy cognitive map. Relational development between factors was observed by simulating the model according to the initial condition of the factors. Thus, the model helps investors and governments to direct their solar and wind energy investment decisions.</description><identifier>ISSN: 2199-4536</identifier><identifier>EISSN: 2198-6053</identifier><identifier>DOI: 10.1007/s40747-017-0043-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alternative energy sources ; Cognitive maps ; Cognitive models ; Coils ; Complexity ; Computational Intelligence ; Computer simulation ; Data Structures and Information Theory ; Energy consumption ; Energy resources ; Engineering ; Fossil fuels ; Fuzzy sets ; Identification methods ; Investment ; Natural gas ; Original Article ; Renewable energy sources ; Renewable resources ; Wind power</subject><ispartof>Complex &amp; intelligent systems, 2017-10, Vol.3 (3), p.155-166</ispartof><rights>The Author(s) 2017</rights><rights>The Author(s) 2017. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-55c395f8007013f11cc9088497a851a6460967d17ecee837c2461167477a8ccf3</citedby><cites>FETCH-LOGICAL-c289t-55c395f8007013f11cc9088497a851a6460967d17ecee837c2461167477a8ccf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40747-017-0043-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40747-017-0043-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27901,27902,41096,41464,42165,42533,51294,51551</link.rule.ids></links><search><creatorcontrib>Çoban, Veysel</creatorcontrib><creatorcontrib>Onar, Sezi Çevik</creatorcontrib><title>Modeling renewable energy usage with hesitant Fuzzy cognitive map</title><title>Complex &amp; intelligent systems</title><addtitle>Complex Intell. Syst</addtitle><description>Renewable energy sources (solar, wind, tidal, etc.), which are unlimited and have a fair distribution in the world, are an alternative to the depleting fossil fuels (coil, petroleum, natural gas, etc.). It is necessary to identify the right technologies and methods to make more effective use of renewable energy sources including uncertainty and irregularity in resource creation. In this study, dynamic environmental factors affecting the production of solar and wind energy are defined and the relations among them are linguistically expressed by the experts. These linguistic relationships among factors and their initial states are assessed by new developed hesitant linguistic cognitive map method that is an extension of hesitant fuzzy sets and fuzzy cognitive map. Relational development between factors was observed by simulating the model according to the initial condition of the factors. Thus, the model helps investors and governments to direct their solar and wind energy investment decisions.</description><subject>Alternative energy sources</subject><subject>Cognitive maps</subject><subject>Cognitive models</subject><subject>Coils</subject><subject>Complexity</subject><subject>Computational Intelligence</subject><subject>Computer simulation</subject><subject>Data Structures and Information Theory</subject><subject>Energy consumption</subject><subject>Energy resources</subject><subject>Engineering</subject><subject>Fossil fuels</subject><subject>Fuzzy sets</subject><subject>Identification methods</subject><subject>Investment</subject><subject>Natural gas</subject><subject>Original Article</subject><subject>Renewable energy sources</subject><subject>Renewable resources</subject><subject>Wind power</subject><issn>2199-4536</issn><issn>2198-6053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1UMtOwzAQtBBIVKUfwM0SZ8P6ET-OVUUBqYgLnC3jOmmqNil2QpV-PYYgceKw2jnMzO4MQtcUbimAuksClFAEaB4QnAxnaMKo0URCwc9_sCGi4PISzVLaAmSm0hzYBM2f23XY1U2FY2jC0b3vAs4gVgPuk6sCPtbdBm9CqjvXdHjZn04D9m3V1F39GfDeHa7QRel2Kcx-9xS9Le9fF49k9fLwtJiviGfadKQoPDdFqfO_QHlJqfcGtBZGOV1QJ4UEI9WaquBD0Fx5JiSlMufKBO9LPkU3o-8hth99SJ3dtn1s8knLBEijOMsRp4iOLB_blGIo7SHWexcHS8F-l2XHsmyuwH6XZYesYaMmZW5Thfjn_L_oCwzPa1E</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Çoban, Veysel</creator><creator>Onar, Sezi Çevik</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20171001</creationdate><title>Modeling renewable energy usage with hesitant Fuzzy cognitive map</title><author>Çoban, Veysel ; Onar, Sezi Çevik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-55c395f8007013f11cc9088497a851a6460967d17ecee837c2461167477a8ccf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alternative energy sources</topic><topic>Cognitive maps</topic><topic>Cognitive models</topic><topic>Coils</topic><topic>Complexity</topic><topic>Computational Intelligence</topic><topic>Computer simulation</topic><topic>Data Structures and Information Theory</topic><topic>Energy consumption</topic><topic>Energy resources</topic><topic>Engineering</topic><topic>Fossil fuels</topic><topic>Fuzzy sets</topic><topic>Identification methods</topic><topic>Investment</topic><topic>Natural gas</topic><topic>Original Article</topic><topic>Renewable energy sources</topic><topic>Renewable resources</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Çoban, Veysel</creatorcontrib><creatorcontrib>Onar, Sezi Çevik</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Complex &amp; intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Çoban, Veysel</au><au>Onar, Sezi Çevik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling renewable energy usage with hesitant Fuzzy cognitive map</atitle><jtitle>Complex &amp; intelligent systems</jtitle><stitle>Complex Intell. Syst</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>3</volume><issue>3</issue><spage>155</spage><epage>166</epage><pages>155-166</pages><issn>2199-4536</issn><eissn>2198-6053</eissn><abstract>Renewable energy sources (solar, wind, tidal, etc.), which are unlimited and have a fair distribution in the world, are an alternative to the depleting fossil fuels (coil, petroleum, natural gas, etc.). It is necessary to identify the right technologies and methods to make more effective use of renewable energy sources including uncertainty and irregularity in resource creation. In this study, dynamic environmental factors affecting the production of solar and wind energy are defined and the relations among them are linguistically expressed by the experts. These linguistic relationships among factors and their initial states are assessed by new developed hesitant linguistic cognitive map method that is an extension of hesitant fuzzy sets and fuzzy cognitive map. Relational development between factors was observed by simulating the model according to the initial condition of the factors. Thus, the model helps investors and governments to direct their solar and wind energy investment decisions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40747-017-0043-y</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2199-4536
ispartof Complex & intelligent systems, 2017-10, Vol.3 (3), p.155-166
issn 2199-4536
2198-6053
language eng
recordid cdi_proquest_journals_2406973245
source Springer Nature - Complete Springer Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals
subjects Alternative energy sources
Cognitive maps
Cognitive models
Coils
Complexity
Computational Intelligence
Computer simulation
Data Structures and Information Theory
Energy consumption
Energy resources
Engineering
Fossil fuels
Fuzzy sets
Identification methods
Investment
Natural gas
Original Article
Renewable energy sources
Renewable resources
Wind power
title Modeling renewable energy usage with hesitant Fuzzy cognitive map
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A25%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20renewable%20energy%20usage%20with%20hesitant%20Fuzzy%20cognitive%20map&rft.jtitle=Complex%20&%20intelligent%20systems&rft.au=%C3%87oban,%20Veysel&rft.date=2017-10-01&rft.volume=3&rft.issue=3&rft.spage=155&rft.epage=166&rft.pages=155-166&rft.issn=2199-4536&rft.eissn=2198-6053&rft_id=info:doi/10.1007/s40747-017-0043-y&rft_dat=%3Cproquest_cross%3E2406973245%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406973245&rft_id=info:pmid/&rfr_iscdi=true