In-Situ DRIFTS for Reaction Mechanism and SO2 Poisoning Mechanism of NO Oxidation Over γ-MnO2 with Good Low-Temperature Activity

In this study, the γ-MnO 2 catalyst modified with PEG exhibits outstanding low-temperature performances for NO oxidation, and in-situ DRIFTS experiments were used to systematically investigate the low-temperature NO oxidation mechanisms over γ-MnO 2 . These results demonstrated that NO was first ads...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis letters 2019-03, Vol.149 (3), p.753-765
Hauptverfasser: Chen, Hu, Wang, Ying, Lyu, Yong-Kang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 765
container_issue 3
container_start_page 753
container_title Catalysis letters
container_volume 149
creator Chen, Hu
Wang, Ying
Lyu, Yong-Kang
description In this study, the γ-MnO 2 catalyst modified with PEG exhibits outstanding low-temperature performances for NO oxidation, and in-situ DRIFTS experiments were used to systematically investigate the low-temperature NO oxidation mechanisms over γ-MnO 2 . These results demonstrated that NO was first adsorbed on the surface of γ-MnO 2 to form the nitrosyls, which could be further oxidized to nitrates under the action of the chemisorbed oxygen or lattice oxygen, and afterwards the formed nitrates were decomposed into nitrogen dioxide. Moreover, the inhibitory mechanism of SO 2 on γ-MnO 2 was also studied, and SO 2 severely inhibit the NO oxidation performance of γ-MnO 2 through forming stable sulfates that could easily consume the active sites of the catalyst to hinder the formation of nitrates, resulting in the termination of oxidation of NO to NO 2 . Clarifying the mechanisms of NO oxidation and SO 2 poison is very essential for developing better NO oxidation catalysts. Graphical Abstract
doi_str_mv 10.1007/s10562-018-2635-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2406794862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406794862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-e1fb03837fbe248cb51dc6dd29d659b94e515597ec1d65f360650f0dd13497f3</originalsourceid><addsrcrecordid>eNp1kM1OAyEUhSdGE-vPA7gjcY0CM8CwbPypTVrH2Fm4I9MBlMZChWmrS5_J9_CZpNZEN67uzb3nOyc5WXaC0RlGiJ9HjCgjEOESEpZTyHayHqacwJKLh920I4xhzsnDfnYQ4wwhJDgWvex96ODEdktweT-8rifA-ADuddN21jsw1u1T42ycg8YpMKkIuPM2emfd45-fN-C2AtWrVc03Va10AJ8fcOwSsLbdExh4r8DIr2Gt5wsdmm4ZNOinjJXt3o6yPdM8R338Mw-z-vqqvriBo2owvOiPYEtK0UGNzRTlZc7NVJOibKcUq5YpRYRiVExFoSmmVHDd4nQwOUOMIoOUwnkhuMkPs9Ot7SL4l6WOnZz5ZXApUZICMS6KkpGkwltVG3yMQRu5CHbehDeJkdwULbdFy1S03BQtWWLIlolJ6x51-HX-H_oCmgiAkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406794862</pqid></control><display><type>article</type><title>In-Situ DRIFTS for Reaction Mechanism and SO2 Poisoning Mechanism of NO Oxidation Over γ-MnO2 with Good Low-Temperature Activity</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Hu ; Wang, Ying ; Lyu, Yong-Kang</creator><creatorcontrib>Chen, Hu ; Wang, Ying ; Lyu, Yong-Kang</creatorcontrib><description>In this study, the γ-MnO 2 catalyst modified with PEG exhibits outstanding low-temperature performances for NO oxidation, and in-situ DRIFTS experiments were used to systematically investigate the low-temperature NO oxidation mechanisms over γ-MnO 2 . These results demonstrated that NO was first adsorbed on the surface of γ-MnO 2 to form the nitrosyls, which could be further oxidized to nitrates under the action of the chemisorbed oxygen or lattice oxygen, and afterwards the formed nitrates were decomposed into nitrogen dioxide. Moreover, the inhibitory mechanism of SO 2 on γ-MnO 2 was also studied, and SO 2 severely inhibit the NO oxidation performance of γ-MnO 2 through forming stable sulfates that could easily consume the active sites of the catalyst to hinder the formation of nitrates, resulting in the termination of oxidation of NO to NO 2 . Clarifying the mechanisms of NO oxidation and SO 2 poison is very essential for developing better NO oxidation catalysts. Graphical Abstract</description><identifier>ISSN: 1011-372X</identifier><identifier>EISSN: 1572-879X</identifier><identifier>DOI: 10.1007/s10562-018-2635-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Catalysis ; Catalysts ; Chemistry ; Chemistry and Materials Science ; Industrial Chemistry/Chemical Engineering ; Low temperature ; Manganese dioxide ; Nitrates ; Nitrogen dioxide ; Nitrosyls ; Organometallic Chemistry ; Oxidation ; Physical Chemistry ; Reaction mechanisms</subject><ispartof>Catalysis letters, 2019-03, Vol.149 (3), p.753-765</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-e1fb03837fbe248cb51dc6dd29d659b94e515597ec1d65f360650f0dd13497f3</citedby><cites>FETCH-LOGICAL-c289t-e1fb03837fbe248cb51dc6dd29d659b94e515597ec1d65f360650f0dd13497f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10562-018-2635-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10562-018-2635-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Chen, Hu</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Lyu, Yong-Kang</creatorcontrib><title>In-Situ DRIFTS for Reaction Mechanism and SO2 Poisoning Mechanism of NO Oxidation Over γ-MnO2 with Good Low-Temperature Activity</title><title>Catalysis letters</title><addtitle>Catal Lett</addtitle><description>In this study, the γ-MnO 2 catalyst modified with PEG exhibits outstanding low-temperature performances for NO oxidation, and in-situ DRIFTS experiments were used to systematically investigate the low-temperature NO oxidation mechanisms over γ-MnO 2 . These results demonstrated that NO was first adsorbed on the surface of γ-MnO 2 to form the nitrosyls, which could be further oxidized to nitrates under the action of the chemisorbed oxygen or lattice oxygen, and afterwards the formed nitrates were decomposed into nitrogen dioxide. Moreover, the inhibitory mechanism of SO 2 on γ-MnO 2 was also studied, and SO 2 severely inhibit the NO oxidation performance of γ-MnO 2 through forming stable sulfates that could easily consume the active sites of the catalyst to hinder the formation of nitrates, resulting in the termination of oxidation of NO to NO 2 . Clarifying the mechanisms of NO oxidation and SO 2 poison is very essential for developing better NO oxidation catalysts. Graphical Abstract</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Low temperature</subject><subject>Manganese dioxide</subject><subject>Nitrates</subject><subject>Nitrogen dioxide</subject><subject>Nitrosyls</subject><subject>Organometallic Chemistry</subject><subject>Oxidation</subject><subject>Physical Chemistry</subject><subject>Reaction mechanisms</subject><issn>1011-372X</issn><issn>1572-879X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1OAyEUhSdGE-vPA7gjcY0CM8CwbPypTVrH2Fm4I9MBlMZChWmrS5_J9_CZpNZEN67uzb3nOyc5WXaC0RlGiJ9HjCgjEOESEpZTyHayHqacwJKLh920I4xhzsnDfnYQ4wwhJDgWvex96ODEdktweT-8rifA-ADuddN21jsw1u1T42ycg8YpMKkIuPM2emfd45-fN-C2AtWrVc03Va10AJ8fcOwSsLbdExh4r8DIr2Gt5wsdmm4ZNOinjJXt3o6yPdM8R338Mw-z-vqqvriBo2owvOiPYEtK0UGNzRTlZc7NVJOibKcUq5YpRYRiVExFoSmmVHDd4nQwOUOMIoOUwnkhuMkPs9Ot7SL4l6WOnZz5ZXApUZICMS6KkpGkwltVG3yMQRu5CHbehDeJkdwULbdFy1S03BQtWWLIlolJ6x51-HX-H_oCmgiAkg</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Chen, Hu</creator><creator>Wang, Ying</creator><creator>Lyu, Yong-Kang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190301</creationdate><title>In-Situ DRIFTS for Reaction Mechanism and SO2 Poisoning Mechanism of NO Oxidation Over γ-MnO2 with Good Low-Temperature Activity</title><author>Chen, Hu ; Wang, Ying ; Lyu, Yong-Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-e1fb03837fbe248cb51dc6dd29d659b94e515597ec1d65f360650f0dd13497f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Low temperature</topic><topic>Manganese dioxide</topic><topic>Nitrates</topic><topic>Nitrogen dioxide</topic><topic>Nitrosyls</topic><topic>Organometallic Chemistry</topic><topic>Oxidation</topic><topic>Physical Chemistry</topic><topic>Reaction mechanisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hu</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Lyu, Yong-Kang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hu</au><au>Wang, Ying</au><au>Lyu, Yong-Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-Situ DRIFTS for Reaction Mechanism and SO2 Poisoning Mechanism of NO Oxidation Over γ-MnO2 with Good Low-Temperature Activity</atitle><jtitle>Catalysis letters</jtitle><stitle>Catal Lett</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>149</volume><issue>3</issue><spage>753</spage><epage>765</epage><pages>753-765</pages><issn>1011-372X</issn><eissn>1572-879X</eissn><abstract>In this study, the γ-MnO 2 catalyst modified with PEG exhibits outstanding low-temperature performances for NO oxidation, and in-situ DRIFTS experiments were used to systematically investigate the low-temperature NO oxidation mechanisms over γ-MnO 2 . These results demonstrated that NO was first adsorbed on the surface of γ-MnO 2 to form the nitrosyls, which could be further oxidized to nitrates under the action of the chemisorbed oxygen or lattice oxygen, and afterwards the formed nitrates were decomposed into nitrogen dioxide. Moreover, the inhibitory mechanism of SO 2 on γ-MnO 2 was also studied, and SO 2 severely inhibit the NO oxidation performance of γ-MnO 2 through forming stable sulfates that could easily consume the active sites of the catalyst to hinder the formation of nitrates, resulting in the termination of oxidation of NO to NO 2 . Clarifying the mechanisms of NO oxidation and SO 2 poison is very essential for developing better NO oxidation catalysts. Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10562-018-2635-6</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1011-372X
ispartof Catalysis letters, 2019-03, Vol.149 (3), p.753-765
issn 1011-372X
1572-879X
language eng
recordid cdi_proquest_journals_2406794862
source SpringerLink Journals - AutoHoldings
subjects Catalysis
Catalysts
Chemistry
Chemistry and Materials Science
Industrial Chemistry/Chemical Engineering
Low temperature
Manganese dioxide
Nitrates
Nitrogen dioxide
Nitrosyls
Organometallic Chemistry
Oxidation
Physical Chemistry
Reaction mechanisms
title In-Situ DRIFTS for Reaction Mechanism and SO2 Poisoning Mechanism of NO Oxidation Over γ-MnO2 with Good Low-Temperature Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A37%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-Situ%20DRIFTS%20for%20Reaction%20Mechanism%20and%20SO2%20Poisoning%20Mechanism%20of%20NO%20Oxidation%20Over%20%CE%B3-MnO2%20with%20Good%20Low-Temperature%20Activity&rft.jtitle=Catalysis%20letters&rft.au=Chen,%20Hu&rft.date=2019-03-01&rft.volume=149&rft.issue=3&rft.spage=753&rft.epage=765&rft.pages=753-765&rft.issn=1011-372X&rft.eissn=1572-879X&rft_id=info:doi/10.1007/s10562-018-2635-6&rft_dat=%3Cproquest_cross%3E2406794862%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406794862&rft_id=info:pmid/&rfr_iscdi=true