In-Situ DRIFTS for Reaction Mechanism and SO2 Poisoning Mechanism of NO Oxidation Over γ-MnO2 with Good Low-Temperature Activity
In this study, the γ-MnO 2 catalyst modified with PEG exhibits outstanding low-temperature performances for NO oxidation, and in-situ DRIFTS experiments were used to systematically investigate the low-temperature NO oxidation mechanisms over γ-MnO 2 . These results demonstrated that NO was first ads...
Gespeichert in:
Veröffentlicht in: | Catalysis letters 2019-03, Vol.149 (3), p.753-765 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 765 |
---|---|
container_issue | 3 |
container_start_page | 753 |
container_title | Catalysis letters |
container_volume | 149 |
creator | Chen, Hu Wang, Ying Lyu, Yong-Kang |
description | In this study, the γ-MnO
2
catalyst modified with PEG exhibits outstanding low-temperature performances for NO oxidation, and in-situ DRIFTS experiments were used to systematically investigate the low-temperature NO oxidation mechanisms over γ-MnO
2
. These results demonstrated that NO was first adsorbed on the surface of γ-MnO
2
to form the nitrosyls, which could be further oxidized to nitrates under the action of the chemisorbed oxygen or lattice oxygen, and afterwards the formed nitrates were decomposed into nitrogen dioxide. Moreover, the inhibitory mechanism of SO
2
on γ-MnO
2
was also studied, and SO
2
severely inhibit the NO oxidation performance of γ-MnO
2
through forming stable sulfates that could easily consume the active sites of the catalyst to hinder the formation of nitrates, resulting in the termination of oxidation of NO to NO
2
. Clarifying the mechanisms of NO oxidation and SO
2
poison is very essential for developing better NO oxidation catalysts.
Graphical Abstract |
doi_str_mv | 10.1007/s10562-018-2635-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2406794862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406794862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-e1fb03837fbe248cb51dc6dd29d659b94e515597ec1d65f360650f0dd13497f3</originalsourceid><addsrcrecordid>eNp1kM1OAyEUhSdGE-vPA7gjcY0CM8CwbPypTVrH2Fm4I9MBlMZChWmrS5_J9_CZpNZEN67uzb3nOyc5WXaC0RlGiJ9HjCgjEOESEpZTyHayHqacwJKLh920I4xhzsnDfnYQ4wwhJDgWvex96ODEdktweT-8rifA-ADuddN21jsw1u1T42ycg8YpMKkIuPM2emfd45-fN-C2AtWrVc03Va10AJ8fcOwSsLbdExh4r8DIr2Gt5wsdmm4ZNOinjJXt3o6yPdM8R338Mw-z-vqqvriBo2owvOiPYEtK0UGNzRTlZc7NVJOibKcUq5YpRYRiVExFoSmmVHDd4nQwOUOMIoOUwnkhuMkPs9Ot7SL4l6WOnZz5ZXApUZICMS6KkpGkwltVG3yMQRu5CHbehDeJkdwULbdFy1S03BQtWWLIlolJ6x51-HX-H_oCmgiAkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406794862</pqid></control><display><type>article</type><title>In-Situ DRIFTS for Reaction Mechanism and SO2 Poisoning Mechanism of NO Oxidation Over γ-MnO2 with Good Low-Temperature Activity</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Hu ; Wang, Ying ; Lyu, Yong-Kang</creator><creatorcontrib>Chen, Hu ; Wang, Ying ; Lyu, Yong-Kang</creatorcontrib><description>In this study, the γ-MnO
2
catalyst modified with PEG exhibits outstanding low-temperature performances for NO oxidation, and in-situ DRIFTS experiments were used to systematically investigate the low-temperature NO oxidation mechanisms over γ-MnO
2
. These results demonstrated that NO was first adsorbed on the surface of γ-MnO
2
to form the nitrosyls, which could be further oxidized to nitrates under the action of the chemisorbed oxygen or lattice oxygen, and afterwards the formed nitrates were decomposed into nitrogen dioxide. Moreover, the inhibitory mechanism of SO
2
on γ-MnO
2
was also studied, and SO
2
severely inhibit the NO oxidation performance of γ-MnO
2
through forming stable sulfates that could easily consume the active sites of the catalyst to hinder the formation of nitrates, resulting in the termination of oxidation of NO to NO
2
. Clarifying the mechanisms of NO oxidation and SO
2
poison is very essential for developing better NO oxidation catalysts.
Graphical Abstract</description><identifier>ISSN: 1011-372X</identifier><identifier>EISSN: 1572-879X</identifier><identifier>DOI: 10.1007/s10562-018-2635-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Catalysis ; Catalysts ; Chemistry ; Chemistry and Materials Science ; Industrial Chemistry/Chemical Engineering ; Low temperature ; Manganese dioxide ; Nitrates ; Nitrogen dioxide ; Nitrosyls ; Organometallic Chemistry ; Oxidation ; Physical Chemistry ; Reaction mechanisms</subject><ispartof>Catalysis letters, 2019-03, Vol.149 (3), p.753-765</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-e1fb03837fbe248cb51dc6dd29d659b94e515597ec1d65f360650f0dd13497f3</citedby><cites>FETCH-LOGICAL-c289t-e1fb03837fbe248cb51dc6dd29d659b94e515597ec1d65f360650f0dd13497f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10562-018-2635-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10562-018-2635-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Chen, Hu</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Lyu, Yong-Kang</creatorcontrib><title>In-Situ DRIFTS for Reaction Mechanism and SO2 Poisoning Mechanism of NO Oxidation Over γ-MnO2 with Good Low-Temperature Activity</title><title>Catalysis letters</title><addtitle>Catal Lett</addtitle><description>In this study, the γ-MnO
2
catalyst modified with PEG exhibits outstanding low-temperature performances for NO oxidation, and in-situ DRIFTS experiments were used to systematically investigate the low-temperature NO oxidation mechanisms over γ-MnO
2
. These results demonstrated that NO was first adsorbed on the surface of γ-MnO
2
to form the nitrosyls, which could be further oxidized to nitrates under the action of the chemisorbed oxygen or lattice oxygen, and afterwards the formed nitrates were decomposed into nitrogen dioxide. Moreover, the inhibitory mechanism of SO
2
on γ-MnO
2
was also studied, and SO
2
severely inhibit the NO oxidation performance of γ-MnO
2
through forming stable sulfates that could easily consume the active sites of the catalyst to hinder the formation of nitrates, resulting in the termination of oxidation of NO to NO
2
. Clarifying the mechanisms of NO oxidation and SO
2
poison is very essential for developing better NO oxidation catalysts.
Graphical Abstract</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Low temperature</subject><subject>Manganese dioxide</subject><subject>Nitrates</subject><subject>Nitrogen dioxide</subject><subject>Nitrosyls</subject><subject>Organometallic Chemistry</subject><subject>Oxidation</subject><subject>Physical Chemistry</subject><subject>Reaction mechanisms</subject><issn>1011-372X</issn><issn>1572-879X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1OAyEUhSdGE-vPA7gjcY0CM8CwbPypTVrH2Fm4I9MBlMZChWmrS5_J9_CZpNZEN67uzb3nOyc5WXaC0RlGiJ9HjCgjEOESEpZTyHayHqacwJKLh920I4xhzsnDfnYQ4wwhJDgWvex96ODEdktweT-8rifA-ADuddN21jsw1u1T42ycg8YpMKkIuPM2emfd45-fN-C2AtWrVc03Va10AJ8fcOwSsLbdExh4r8DIr2Gt5wsdmm4ZNOinjJXt3o6yPdM8R338Mw-z-vqqvriBo2owvOiPYEtK0UGNzRTlZc7NVJOibKcUq5YpRYRiVExFoSmmVHDd4nQwOUOMIoOUwnkhuMkPs9Ot7SL4l6WOnZz5ZXApUZICMS6KkpGkwltVG3yMQRu5CHbehDeJkdwULbdFy1S03BQtWWLIlolJ6x51-HX-H_oCmgiAkg</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Chen, Hu</creator><creator>Wang, Ying</creator><creator>Lyu, Yong-Kang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190301</creationdate><title>In-Situ DRIFTS for Reaction Mechanism and SO2 Poisoning Mechanism of NO Oxidation Over γ-MnO2 with Good Low-Temperature Activity</title><author>Chen, Hu ; Wang, Ying ; Lyu, Yong-Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-e1fb03837fbe248cb51dc6dd29d659b94e515597ec1d65f360650f0dd13497f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Low temperature</topic><topic>Manganese dioxide</topic><topic>Nitrates</topic><topic>Nitrogen dioxide</topic><topic>Nitrosyls</topic><topic>Organometallic Chemistry</topic><topic>Oxidation</topic><topic>Physical Chemistry</topic><topic>Reaction mechanisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hu</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Lyu, Yong-Kang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hu</au><au>Wang, Ying</au><au>Lyu, Yong-Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-Situ DRIFTS for Reaction Mechanism and SO2 Poisoning Mechanism of NO Oxidation Over γ-MnO2 with Good Low-Temperature Activity</atitle><jtitle>Catalysis letters</jtitle><stitle>Catal Lett</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>149</volume><issue>3</issue><spage>753</spage><epage>765</epage><pages>753-765</pages><issn>1011-372X</issn><eissn>1572-879X</eissn><abstract>In this study, the γ-MnO
2
catalyst modified with PEG exhibits outstanding low-temperature performances for NO oxidation, and in-situ DRIFTS experiments were used to systematically investigate the low-temperature NO oxidation mechanisms over γ-MnO
2
. These results demonstrated that NO was first adsorbed on the surface of γ-MnO
2
to form the nitrosyls, which could be further oxidized to nitrates under the action of the chemisorbed oxygen or lattice oxygen, and afterwards the formed nitrates were decomposed into nitrogen dioxide. Moreover, the inhibitory mechanism of SO
2
on γ-MnO
2
was also studied, and SO
2
severely inhibit the NO oxidation performance of γ-MnO
2
through forming stable sulfates that could easily consume the active sites of the catalyst to hinder the formation of nitrates, resulting in the termination of oxidation of NO to NO
2
. Clarifying the mechanisms of NO oxidation and SO
2
poison is very essential for developing better NO oxidation catalysts.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10562-018-2635-6</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1011-372X |
ispartof | Catalysis letters, 2019-03, Vol.149 (3), p.753-765 |
issn | 1011-372X 1572-879X |
language | eng |
recordid | cdi_proquest_journals_2406794862 |
source | SpringerLink Journals - AutoHoldings |
subjects | Catalysis Catalysts Chemistry Chemistry and Materials Science Industrial Chemistry/Chemical Engineering Low temperature Manganese dioxide Nitrates Nitrogen dioxide Nitrosyls Organometallic Chemistry Oxidation Physical Chemistry Reaction mechanisms |
title | In-Situ DRIFTS for Reaction Mechanism and SO2 Poisoning Mechanism of NO Oxidation Over γ-MnO2 with Good Low-Temperature Activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A37%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-Situ%20DRIFTS%20for%20Reaction%20Mechanism%20and%20SO2%20Poisoning%20Mechanism%20of%20NO%20Oxidation%20Over%20%CE%B3-MnO2%20with%20Good%20Low-Temperature%20Activity&rft.jtitle=Catalysis%20letters&rft.au=Chen,%20Hu&rft.date=2019-03-01&rft.volume=149&rft.issue=3&rft.spage=753&rft.epage=765&rft.pages=753-765&rft.issn=1011-372X&rft.eissn=1572-879X&rft_id=info:doi/10.1007/s10562-018-2635-6&rft_dat=%3Cproquest_cross%3E2406794862%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406794862&rft_id=info:pmid/&rfr_iscdi=true |