Development of a Novel Mesoporous Biocatalyst Derived from Kola Nut Pod Husk for Conversion of Kariya Seed Oil to Methyl Esters: A Case of Synthesis, Modeling and Optimization Studies

A base heterogeneous catalyst was prepared from kola nut pod husk which was subsequently applied to conversion of Kariya seed oil (KSO) to produce biodiesel via transesterification process. Characterization of the developed catalyst was performed using scanning electron microscope–energy dispersive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis letters 2019-07, Vol.149 (7), p.1772-1787
Hauptverfasser: Betiku, Eriola, Okeleye, Adebisi A., Ishola, Niyi B., Osunleke, Ajiboye S., Ojumu, Tunde V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1787
container_issue 7
container_start_page 1772
container_title Catalysis letters
container_volume 149
creator Betiku, Eriola
Okeleye, Adebisi A.
Ishola, Niyi B.
Osunleke, Ajiboye S.
Ojumu, Tunde V.
description A base heterogeneous catalyst was prepared from kola nut pod husk which was subsequently applied to conversion of Kariya seed oil (KSO) to produce biodiesel via transesterification process. Characterization of the developed catalyst was performed using scanning electron microscope–energy dispersive X-ray (SEM–EDX), X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) analysis. The central composite design was used to produce 28 experimental conditions employed in investigating the individual and synergetic influence of the process input parameters viz. methanol/KSO oil molar ratio, catalyst loading level and process reaction time on Kariya oil methyl esters (KOME) yield. The process input parameters examined were optimized using statistical approach through response surface methodology. The characterization of the catalyst developed showed that its catalytic activity was due largely to its high level of K and Ca. The best reaction condition for the transesterification process was found to be methanol/KSO molar ratio of 6:1, catalyst loading level of 3 wt% and process reaction time of 75 min at reaction temperature of 65 °C which led to maximum KOME yield of 98.67 ± 0.01 wt%. The results of various statistics employed in testing the model developed indicate that it is accurate and reliable. The study shows that the catalyst can be re-used up to four times. Graphical Abstract
doi_str_mv 10.1007/s10562-019-02788-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2406784193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A585948977</galeid><sourcerecordid>A585948977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-7c868ee2d511fe502c321f52662584e1df454a5d7d10d5ef9bab87d329ee07663</originalsourceid><addsrcrecordid>eNp9kcFu1DAURSMEEqXwA6wssUIixXbiOGY3TAut2lLEgNSd5cbPU5eMndrOiPBj_B4OQULdIC9sPZ1z_aRbFC8JPiIY87eRYNbQEhNRYsrbtmweFQeEcVq2XFw_zm9MSFlxev20eBbjHcZYcCIOil_HsIfeDztwCXmDFPrk8wBdQvSDD36M6L31nUqqn2JCxxDsHjQywe_Que8zPib02Wt0OsbvyPiA1t7tIUTr3Zx3roKdFNpAlq5sj5LP0el26tFJTBl7h1ZorSLM7GZy6RaijW_QpdfQW7dFymVvSHZnf6o0Z27SqC3E58UTo_oIL_7eh8W3Dydf16flxdXHs_XqouxqKlLJu7ZpAahmhBhgmHYVJYbRpqGsrYFoU7NaMc01wZqBETfqpuW6ogIA86apDotXS-4Q_P0IMck7PwaXv5S0xg1vayKqTB0t1Fb1IK0zPgXV5aNhZzvvwNg8X7GWiboVnGfh9QMhMwl-pK0aY5Rnmy8PWbqwXfAxBjByCHanwiQJlnP7cmlf5vbln_blvHe1SDHDbgvh397_sX4DMnKzZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406784193</pqid></control><display><type>article</type><title>Development of a Novel Mesoporous Biocatalyst Derived from Kola Nut Pod Husk for Conversion of Kariya Seed Oil to Methyl Esters: A Case of Synthesis, Modeling and Optimization Studies</title><source>SpringerLink Journals - AutoHoldings</source><creator>Betiku, Eriola ; Okeleye, Adebisi A. ; Ishola, Niyi B. ; Osunleke, Ajiboye S. ; Ojumu, Tunde V.</creator><creatorcontrib>Betiku, Eriola ; Okeleye, Adebisi A. ; Ishola, Niyi B. ; Osunleke, Ajiboye S. ; Ojumu, Tunde V.</creatorcontrib><description>A base heterogeneous catalyst was prepared from kola nut pod husk which was subsequently applied to conversion of Kariya seed oil (KSO) to produce biodiesel via transesterification process. Characterization of the developed catalyst was performed using scanning electron microscope–energy dispersive X-ray (SEM–EDX), X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) analysis. The central composite design was used to produce 28 experimental conditions employed in investigating the individual and synergetic influence of the process input parameters viz. methanol/KSO oil molar ratio, catalyst loading level and process reaction time on Kariya oil methyl esters (KOME) yield. The process input parameters examined were optimized using statistical approach through response surface methodology. The characterization of the catalyst developed showed that its catalytic activity was due largely to its high level of K and Ca. The best reaction condition for the transesterification process was found to be methanol/KSO molar ratio of 6:1, catalyst loading level of 3 wt% and process reaction time of 75 min at reaction temperature of 65 °C which led to maximum KOME yield of 98.67 ± 0.01 wt%. The results of various statistics employed in testing the model developed indicate that it is accurate and reliable. The study shows that the catalyst can be re-used up to four times. Graphical Abstract</description><identifier>ISSN: 1011-372X</identifier><identifier>EISSN: 1572-879X</identifier><identifier>DOI: 10.1007/s10562-019-02788-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Biodiesel fuels ; Catalysis ; Catalysts ; Catalytic activity ; Chemistry ; Chemistry and Materials Science ; Conversion ; Diffraction ; Esters ; Industrial Chemistry/Chemical Engineering ; Mathematical models ; Methanol ; Model testing ; Optimization ; Organometallic Chemistry ; Physical Chemistry ; Process parameters ; Reaction time ; Response surface methodology ; Transesterification ; X-rays</subject><ispartof>Catalysis letters, 2019-07, Vol.149 (7), p.1772-1787</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-7c868ee2d511fe502c321f52662584e1df454a5d7d10d5ef9bab87d329ee07663</citedby><cites>FETCH-LOGICAL-c429t-7c868ee2d511fe502c321f52662584e1df454a5d7d10d5ef9bab87d329ee07663</cites><orcidid>0000-0003-4521-1277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10562-019-02788-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10562-019-02788-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Betiku, Eriola</creatorcontrib><creatorcontrib>Okeleye, Adebisi A.</creatorcontrib><creatorcontrib>Ishola, Niyi B.</creatorcontrib><creatorcontrib>Osunleke, Ajiboye S.</creatorcontrib><creatorcontrib>Ojumu, Tunde V.</creatorcontrib><title>Development of a Novel Mesoporous Biocatalyst Derived from Kola Nut Pod Husk for Conversion of Kariya Seed Oil to Methyl Esters: A Case of Synthesis, Modeling and Optimization Studies</title><title>Catalysis letters</title><addtitle>Catal Lett</addtitle><description>A base heterogeneous catalyst was prepared from kola nut pod husk which was subsequently applied to conversion of Kariya seed oil (KSO) to produce biodiesel via transesterification process. Characterization of the developed catalyst was performed using scanning electron microscope–energy dispersive X-ray (SEM–EDX), X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) analysis. The central composite design was used to produce 28 experimental conditions employed in investigating the individual and synergetic influence of the process input parameters viz. methanol/KSO oil molar ratio, catalyst loading level and process reaction time on Kariya oil methyl esters (KOME) yield. The process input parameters examined were optimized using statistical approach through response surface methodology. The characterization of the catalyst developed showed that its catalytic activity was due largely to its high level of K and Ca. The best reaction condition for the transesterification process was found to be methanol/KSO molar ratio of 6:1, catalyst loading level of 3 wt% and process reaction time of 75 min at reaction temperature of 65 °C which led to maximum KOME yield of 98.67 ± 0.01 wt%. The results of various statistics employed in testing the model developed indicate that it is accurate and reliable. The study shows that the catalyst can be re-used up to four times. Graphical Abstract</description><subject>Analysis</subject><subject>Biodiesel fuels</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Conversion</subject><subject>Diffraction</subject><subject>Esters</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Mathematical models</subject><subject>Methanol</subject><subject>Model testing</subject><subject>Optimization</subject><subject>Organometallic Chemistry</subject><subject>Physical Chemistry</subject><subject>Process parameters</subject><subject>Reaction time</subject><subject>Response surface methodology</subject><subject>Transesterification</subject><subject>X-rays</subject><issn>1011-372X</issn><issn>1572-879X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kcFu1DAURSMEEqXwA6wssUIixXbiOGY3TAut2lLEgNSd5cbPU5eMndrOiPBj_B4OQULdIC9sPZ1z_aRbFC8JPiIY87eRYNbQEhNRYsrbtmweFQeEcVq2XFw_zm9MSFlxev20eBbjHcZYcCIOil_HsIfeDztwCXmDFPrk8wBdQvSDD36M6L31nUqqn2JCxxDsHjQywe_Que8zPib02Wt0OsbvyPiA1t7tIUTr3Zx3roKdFNpAlq5sj5LP0el26tFJTBl7h1ZorSLM7GZy6RaijW_QpdfQW7dFymVvSHZnf6o0Z27SqC3E58UTo_oIL_7eh8W3Dydf16flxdXHs_XqouxqKlLJu7ZpAahmhBhgmHYVJYbRpqGsrYFoU7NaMc01wZqBETfqpuW6ogIA86apDotXS-4Q_P0IMck7PwaXv5S0xg1vayKqTB0t1Fb1IK0zPgXV5aNhZzvvwNg8X7GWiboVnGfh9QMhMwl-pK0aY5Rnmy8PWbqwXfAxBjByCHanwiQJlnP7cmlf5vbln_blvHe1SDHDbgvh397_sX4DMnKzZQ</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Betiku, Eriola</creator><creator>Okeleye, Adebisi A.</creator><creator>Ishola, Niyi B.</creator><creator>Osunleke, Ajiboye S.</creator><creator>Ojumu, Tunde V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4521-1277</orcidid></search><sort><creationdate>20190701</creationdate><title>Development of a Novel Mesoporous Biocatalyst Derived from Kola Nut Pod Husk for Conversion of Kariya Seed Oil to Methyl Esters: A Case of Synthesis, Modeling and Optimization Studies</title><author>Betiku, Eriola ; Okeleye, Adebisi A. ; Ishola, Niyi B. ; Osunleke, Ajiboye S. ; Ojumu, Tunde V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-7c868ee2d511fe502c321f52662584e1df454a5d7d10d5ef9bab87d329ee07663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Biodiesel fuels</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Conversion</topic><topic>Diffraction</topic><topic>Esters</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Mathematical models</topic><topic>Methanol</topic><topic>Model testing</topic><topic>Optimization</topic><topic>Organometallic Chemistry</topic><topic>Physical Chemistry</topic><topic>Process parameters</topic><topic>Reaction time</topic><topic>Response surface methodology</topic><topic>Transesterification</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Betiku, Eriola</creatorcontrib><creatorcontrib>Okeleye, Adebisi A.</creatorcontrib><creatorcontrib>Ishola, Niyi B.</creatorcontrib><creatorcontrib>Osunleke, Ajiboye S.</creatorcontrib><creatorcontrib>Ojumu, Tunde V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Betiku, Eriola</au><au>Okeleye, Adebisi A.</au><au>Ishola, Niyi B.</au><au>Osunleke, Ajiboye S.</au><au>Ojumu, Tunde V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Novel Mesoporous Biocatalyst Derived from Kola Nut Pod Husk for Conversion of Kariya Seed Oil to Methyl Esters: A Case of Synthesis, Modeling and Optimization Studies</atitle><jtitle>Catalysis letters</jtitle><stitle>Catal Lett</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>149</volume><issue>7</issue><spage>1772</spage><epage>1787</epage><pages>1772-1787</pages><issn>1011-372X</issn><eissn>1572-879X</eissn><abstract>A base heterogeneous catalyst was prepared from kola nut pod husk which was subsequently applied to conversion of Kariya seed oil (KSO) to produce biodiesel via transesterification process. Characterization of the developed catalyst was performed using scanning electron microscope–energy dispersive X-ray (SEM–EDX), X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) analysis. The central composite design was used to produce 28 experimental conditions employed in investigating the individual and synergetic influence of the process input parameters viz. methanol/KSO oil molar ratio, catalyst loading level and process reaction time on Kariya oil methyl esters (KOME) yield. The process input parameters examined were optimized using statistical approach through response surface methodology. The characterization of the catalyst developed showed that its catalytic activity was due largely to its high level of K and Ca. The best reaction condition for the transesterification process was found to be methanol/KSO molar ratio of 6:1, catalyst loading level of 3 wt% and process reaction time of 75 min at reaction temperature of 65 °C which led to maximum KOME yield of 98.67 ± 0.01 wt%. The results of various statistics employed in testing the model developed indicate that it is accurate and reliable. The study shows that the catalyst can be re-used up to four times. Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10562-019-02788-6</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4521-1277</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1011-372X
ispartof Catalysis letters, 2019-07, Vol.149 (7), p.1772-1787
issn 1011-372X
1572-879X
language eng
recordid cdi_proquest_journals_2406784193
source SpringerLink Journals - AutoHoldings
subjects Analysis
Biodiesel fuels
Catalysis
Catalysts
Catalytic activity
Chemistry
Chemistry and Materials Science
Conversion
Diffraction
Esters
Industrial Chemistry/Chemical Engineering
Mathematical models
Methanol
Model testing
Optimization
Organometallic Chemistry
Physical Chemistry
Process parameters
Reaction time
Response surface methodology
Transesterification
X-rays
title Development of a Novel Mesoporous Biocatalyst Derived from Kola Nut Pod Husk for Conversion of Kariya Seed Oil to Methyl Esters: A Case of Synthesis, Modeling and Optimization Studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A43%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Novel%20Mesoporous%20Biocatalyst%20Derived%20from%20Kola%20Nut%20Pod%20Husk%20for%20Conversion%20of%20Kariya%20Seed%20Oil%20to%20Methyl%20Esters:%20A%20Case%20of%20Synthesis,%20Modeling%20and%20Optimization%20Studies&rft.jtitle=Catalysis%20letters&rft.au=Betiku,%20Eriola&rft.date=2019-07-01&rft.volume=149&rft.issue=7&rft.spage=1772&rft.epage=1787&rft.pages=1772-1787&rft.issn=1011-372X&rft.eissn=1572-879X&rft_id=info:doi/10.1007/s10562-019-02788-6&rft_dat=%3Cgale_proqu%3EA585948977%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406784193&rft_id=info:pmid/&rft_galeid=A585948977&rfr_iscdi=true