Development of a Novel Mesoporous Biocatalyst Derived from Kola Nut Pod Husk for Conversion of Kariya Seed Oil to Methyl Esters: A Case of Synthesis, Modeling and Optimization Studies
A base heterogeneous catalyst was prepared from kola nut pod husk which was subsequently applied to conversion of Kariya seed oil (KSO) to produce biodiesel via transesterification process. Characterization of the developed catalyst was performed using scanning electron microscope–energy dispersive...
Gespeichert in:
Veröffentlicht in: | Catalysis letters 2019-07, Vol.149 (7), p.1772-1787 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1787 |
---|---|
container_issue | 7 |
container_start_page | 1772 |
container_title | Catalysis letters |
container_volume | 149 |
creator | Betiku, Eriola Okeleye, Adebisi A. Ishola, Niyi B. Osunleke, Ajiboye S. Ojumu, Tunde V. |
description | A base heterogeneous catalyst was prepared from kola nut pod husk which was subsequently applied to conversion of
Kariya
seed oil (KSO) to produce biodiesel via transesterification process. Characterization of the developed catalyst was performed using scanning electron microscope–energy dispersive X-ray (SEM–EDX), X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) analysis. The central composite design was used to produce 28 experimental conditions employed in investigating the individual and synergetic influence of the process input parameters viz. methanol/KSO oil molar ratio, catalyst loading level and process reaction time on
Kariya
oil methyl esters (KOME) yield. The process input parameters examined were optimized using statistical approach through response surface methodology. The characterization of the catalyst developed showed that its catalytic activity was due largely to its high level of K and Ca. The best reaction condition for the transesterification process was found to be methanol/KSO molar ratio of 6:1, catalyst loading level of 3 wt% and process reaction time of 75 min at reaction temperature of 65 °C which led to maximum KOME yield of 98.67 ± 0.01 wt%. The results of various statistics employed in testing the model developed indicate that it is accurate and reliable. The study shows that the catalyst can be re-used up to four times.
Graphical Abstract |
doi_str_mv | 10.1007/s10562-019-02788-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2406784193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A585948977</galeid><sourcerecordid>A585948977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-7c868ee2d511fe502c321f52662584e1df454a5d7d10d5ef9bab87d329ee07663</originalsourceid><addsrcrecordid>eNp9kcFu1DAURSMEEqXwA6wssUIixXbiOGY3TAut2lLEgNSd5cbPU5eMndrOiPBj_B4OQULdIC9sPZ1z_aRbFC8JPiIY87eRYNbQEhNRYsrbtmweFQeEcVq2XFw_zm9MSFlxev20eBbjHcZYcCIOil_HsIfeDztwCXmDFPrk8wBdQvSDD36M6L31nUqqn2JCxxDsHjQywe_Que8zPib02Wt0OsbvyPiA1t7tIUTr3Zx3roKdFNpAlq5sj5LP0el26tFJTBl7h1ZorSLM7GZy6RaijW_QpdfQW7dFymVvSHZnf6o0Z27SqC3E58UTo_oIL_7eh8W3Dydf16flxdXHs_XqouxqKlLJu7ZpAahmhBhgmHYVJYbRpqGsrYFoU7NaMc01wZqBETfqpuW6ogIA86apDotXS-4Q_P0IMck7PwaXv5S0xg1vayKqTB0t1Fb1IK0zPgXV5aNhZzvvwNg8X7GWiboVnGfh9QMhMwl-pK0aY5Rnmy8PWbqwXfAxBjByCHanwiQJlnP7cmlf5vbln_blvHe1SDHDbgvh397_sX4DMnKzZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406784193</pqid></control><display><type>article</type><title>Development of a Novel Mesoporous Biocatalyst Derived from Kola Nut Pod Husk for Conversion of Kariya Seed Oil to Methyl Esters: A Case of Synthesis, Modeling and Optimization Studies</title><source>SpringerLink Journals - AutoHoldings</source><creator>Betiku, Eriola ; Okeleye, Adebisi A. ; Ishola, Niyi B. ; Osunleke, Ajiboye S. ; Ojumu, Tunde V.</creator><creatorcontrib>Betiku, Eriola ; Okeleye, Adebisi A. ; Ishola, Niyi B. ; Osunleke, Ajiboye S. ; Ojumu, Tunde V.</creatorcontrib><description>A base heterogeneous catalyst was prepared from kola nut pod husk which was subsequently applied to conversion of
Kariya
seed oil (KSO) to produce biodiesel via transesterification process. Characterization of the developed catalyst was performed using scanning electron microscope–energy dispersive X-ray (SEM–EDX), X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) analysis. The central composite design was used to produce 28 experimental conditions employed in investigating the individual and synergetic influence of the process input parameters viz. methanol/KSO oil molar ratio, catalyst loading level and process reaction time on
Kariya
oil methyl esters (KOME) yield. The process input parameters examined were optimized using statistical approach through response surface methodology. The characterization of the catalyst developed showed that its catalytic activity was due largely to its high level of K and Ca. The best reaction condition for the transesterification process was found to be methanol/KSO molar ratio of 6:1, catalyst loading level of 3 wt% and process reaction time of 75 min at reaction temperature of 65 °C which led to maximum KOME yield of 98.67 ± 0.01 wt%. The results of various statistics employed in testing the model developed indicate that it is accurate and reliable. The study shows that the catalyst can be re-used up to four times.
Graphical Abstract</description><identifier>ISSN: 1011-372X</identifier><identifier>EISSN: 1572-879X</identifier><identifier>DOI: 10.1007/s10562-019-02788-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Biodiesel fuels ; Catalysis ; Catalysts ; Catalytic activity ; Chemistry ; Chemistry and Materials Science ; Conversion ; Diffraction ; Esters ; Industrial Chemistry/Chemical Engineering ; Mathematical models ; Methanol ; Model testing ; Optimization ; Organometallic Chemistry ; Physical Chemistry ; Process parameters ; Reaction time ; Response surface methodology ; Transesterification ; X-rays</subject><ispartof>Catalysis letters, 2019-07, Vol.149 (7), p.1772-1787</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-7c868ee2d511fe502c321f52662584e1df454a5d7d10d5ef9bab87d329ee07663</citedby><cites>FETCH-LOGICAL-c429t-7c868ee2d511fe502c321f52662584e1df454a5d7d10d5ef9bab87d329ee07663</cites><orcidid>0000-0003-4521-1277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10562-019-02788-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10562-019-02788-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Betiku, Eriola</creatorcontrib><creatorcontrib>Okeleye, Adebisi A.</creatorcontrib><creatorcontrib>Ishola, Niyi B.</creatorcontrib><creatorcontrib>Osunleke, Ajiboye S.</creatorcontrib><creatorcontrib>Ojumu, Tunde V.</creatorcontrib><title>Development of a Novel Mesoporous Biocatalyst Derived from Kola Nut Pod Husk for Conversion of Kariya Seed Oil to Methyl Esters: A Case of Synthesis, Modeling and Optimization Studies</title><title>Catalysis letters</title><addtitle>Catal Lett</addtitle><description>A base heterogeneous catalyst was prepared from kola nut pod husk which was subsequently applied to conversion of
Kariya
seed oil (KSO) to produce biodiesel via transesterification process. Characterization of the developed catalyst was performed using scanning electron microscope–energy dispersive X-ray (SEM–EDX), X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) analysis. The central composite design was used to produce 28 experimental conditions employed in investigating the individual and synergetic influence of the process input parameters viz. methanol/KSO oil molar ratio, catalyst loading level and process reaction time on
Kariya
oil methyl esters (KOME) yield. The process input parameters examined were optimized using statistical approach through response surface methodology. The characterization of the catalyst developed showed that its catalytic activity was due largely to its high level of K and Ca. The best reaction condition for the transesterification process was found to be methanol/KSO molar ratio of 6:1, catalyst loading level of 3 wt% and process reaction time of 75 min at reaction temperature of 65 °C which led to maximum KOME yield of 98.67 ± 0.01 wt%. The results of various statistics employed in testing the model developed indicate that it is accurate and reliable. The study shows that the catalyst can be re-used up to four times.
Graphical Abstract</description><subject>Analysis</subject><subject>Biodiesel fuels</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Conversion</subject><subject>Diffraction</subject><subject>Esters</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Mathematical models</subject><subject>Methanol</subject><subject>Model testing</subject><subject>Optimization</subject><subject>Organometallic Chemistry</subject><subject>Physical Chemistry</subject><subject>Process parameters</subject><subject>Reaction time</subject><subject>Response surface methodology</subject><subject>Transesterification</subject><subject>X-rays</subject><issn>1011-372X</issn><issn>1572-879X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kcFu1DAURSMEEqXwA6wssUIixXbiOGY3TAut2lLEgNSd5cbPU5eMndrOiPBj_B4OQULdIC9sPZ1z_aRbFC8JPiIY87eRYNbQEhNRYsrbtmweFQeEcVq2XFw_zm9MSFlxev20eBbjHcZYcCIOil_HsIfeDztwCXmDFPrk8wBdQvSDD36M6L31nUqqn2JCxxDsHjQywe_Que8zPib02Wt0OsbvyPiA1t7tIUTr3Zx3roKdFNpAlq5sj5LP0el26tFJTBl7h1ZorSLM7GZy6RaijW_QpdfQW7dFymVvSHZnf6o0Z27SqC3E58UTo_oIL_7eh8W3Dydf16flxdXHs_XqouxqKlLJu7ZpAahmhBhgmHYVJYbRpqGsrYFoU7NaMc01wZqBETfqpuW6ogIA86apDotXS-4Q_P0IMck7PwaXv5S0xg1vayKqTB0t1Fb1IK0zPgXV5aNhZzvvwNg8X7GWiboVnGfh9QMhMwl-pK0aY5Rnmy8PWbqwXfAxBjByCHanwiQJlnP7cmlf5vbln_blvHe1SDHDbgvh397_sX4DMnKzZQ</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Betiku, Eriola</creator><creator>Okeleye, Adebisi A.</creator><creator>Ishola, Niyi B.</creator><creator>Osunleke, Ajiboye S.</creator><creator>Ojumu, Tunde V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4521-1277</orcidid></search><sort><creationdate>20190701</creationdate><title>Development of a Novel Mesoporous Biocatalyst Derived from Kola Nut Pod Husk for Conversion of Kariya Seed Oil to Methyl Esters: A Case of Synthesis, Modeling and Optimization Studies</title><author>Betiku, Eriola ; Okeleye, Adebisi A. ; Ishola, Niyi B. ; Osunleke, Ajiboye S. ; Ojumu, Tunde V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-7c868ee2d511fe502c321f52662584e1df454a5d7d10d5ef9bab87d329ee07663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Biodiesel fuels</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Conversion</topic><topic>Diffraction</topic><topic>Esters</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Mathematical models</topic><topic>Methanol</topic><topic>Model testing</topic><topic>Optimization</topic><topic>Organometallic Chemistry</topic><topic>Physical Chemistry</topic><topic>Process parameters</topic><topic>Reaction time</topic><topic>Response surface methodology</topic><topic>Transesterification</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Betiku, Eriola</creatorcontrib><creatorcontrib>Okeleye, Adebisi A.</creatorcontrib><creatorcontrib>Ishola, Niyi B.</creatorcontrib><creatorcontrib>Osunleke, Ajiboye S.</creatorcontrib><creatorcontrib>Ojumu, Tunde V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Betiku, Eriola</au><au>Okeleye, Adebisi A.</au><au>Ishola, Niyi B.</au><au>Osunleke, Ajiboye S.</au><au>Ojumu, Tunde V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Novel Mesoporous Biocatalyst Derived from Kola Nut Pod Husk for Conversion of Kariya Seed Oil to Methyl Esters: A Case of Synthesis, Modeling and Optimization Studies</atitle><jtitle>Catalysis letters</jtitle><stitle>Catal Lett</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>149</volume><issue>7</issue><spage>1772</spage><epage>1787</epage><pages>1772-1787</pages><issn>1011-372X</issn><eissn>1572-879X</eissn><abstract>A base heterogeneous catalyst was prepared from kola nut pod husk which was subsequently applied to conversion of
Kariya
seed oil (KSO) to produce biodiesel via transesterification process. Characterization of the developed catalyst was performed using scanning electron microscope–energy dispersive X-ray (SEM–EDX), X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) analysis. The central composite design was used to produce 28 experimental conditions employed in investigating the individual and synergetic influence of the process input parameters viz. methanol/KSO oil molar ratio, catalyst loading level and process reaction time on
Kariya
oil methyl esters (KOME) yield. The process input parameters examined were optimized using statistical approach through response surface methodology. The characterization of the catalyst developed showed that its catalytic activity was due largely to its high level of K and Ca. The best reaction condition for the transesterification process was found to be methanol/KSO molar ratio of 6:1, catalyst loading level of 3 wt% and process reaction time of 75 min at reaction temperature of 65 °C which led to maximum KOME yield of 98.67 ± 0.01 wt%. The results of various statistics employed in testing the model developed indicate that it is accurate and reliable. The study shows that the catalyst can be re-used up to four times.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10562-019-02788-6</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4521-1277</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1011-372X |
ispartof | Catalysis letters, 2019-07, Vol.149 (7), p.1772-1787 |
issn | 1011-372X 1572-879X |
language | eng |
recordid | cdi_proquest_journals_2406784193 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Biodiesel fuels Catalysis Catalysts Catalytic activity Chemistry Chemistry and Materials Science Conversion Diffraction Esters Industrial Chemistry/Chemical Engineering Mathematical models Methanol Model testing Optimization Organometallic Chemistry Physical Chemistry Process parameters Reaction time Response surface methodology Transesterification X-rays |
title | Development of a Novel Mesoporous Biocatalyst Derived from Kola Nut Pod Husk for Conversion of Kariya Seed Oil to Methyl Esters: A Case of Synthesis, Modeling and Optimization Studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A43%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Novel%20Mesoporous%20Biocatalyst%20Derived%20from%20Kola%20Nut%20Pod%20Husk%20for%20Conversion%20of%20Kariya%20Seed%20Oil%20to%20Methyl%20Esters:%20A%20Case%20of%20Synthesis,%20Modeling%20and%20Optimization%20Studies&rft.jtitle=Catalysis%20letters&rft.au=Betiku,%20Eriola&rft.date=2019-07-01&rft.volume=149&rft.issue=7&rft.spage=1772&rft.epage=1787&rft.pages=1772-1787&rft.issn=1011-372X&rft.eissn=1572-879X&rft_id=info:doi/10.1007/s10562-019-02788-6&rft_dat=%3Cgale_proqu%3EA585948977%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406784193&rft_id=info:pmid/&rft_galeid=A585948977&rfr_iscdi=true |