Superpixel Boundary-Based Edge Description Algorithm for SAR Image Segmentation

Although various methods can effectively segment synthetic aperture radar (SAR) images, we found that the method combining superpixel and image edge information can get better results. To solve the problem that common SAR image segmentation methods often segment pixels incorrectly in edge region, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2020, Vol.13, p.1972-1985
Hauptverfasser: Shang, Ronghua, Lin, Junkai, Jiao, Licheng, Yang, Xiaohui, Li, Yangyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1985
container_issue
container_start_page 1972
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 13
creator Shang, Ronghua
Lin, Junkai
Jiao, Licheng
Yang, Xiaohui
Li, Yangyang
description Although various methods can effectively segment synthetic aperture radar (SAR) images, we found that the method combining superpixel and image edge information can get better results. To solve the problem that common SAR image segmentation methods often segment pixels incorrectly in edge region, a superpixel boundary-based edge description algorithm (SpBED) is proposed. First, an edge detection method with three edge detectors is used. Therefore, accurate strong edges of SAR images can be extracted, and false edges that are easy to appear in a single detection method can be effectively eliminated. Then the weak edges of the image are extracted by superpixel generation algorithm. The extracted weak edges can supplement the edge information that is difficult to extract by edge detection. Superpixel boundaries are also used to carry the strong edges, so that the strong and weak edges can be completely represented by superpixel boundaries. Finally, boundary constraint superpixel smoothing is used to reduce the effects of noise, and k-means algorithm is performed on superpixels. Since edge information is carried by superpixels, it effectively guarantees the segmentation accuracy in edge region. Compared with seven state-of-the-art algorithms, segmentation results on simulated images and real images demonstrate the effectiveness of the proposed SpBED.
doi_str_mv 10.1109/JSTARS.2020.2987653
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2406702335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9084390</ieee_id><doaj_id>oai_doaj_org_article_b4ad44e813454f8a8f70ac4ee5defa45</doaj_id><sourcerecordid>2406702335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-90d449c774bda3802f9531f45489ede72b1ee5a7ceff6f42b4fb349c26ee45b53</originalsourceid><addsrcrecordid>eNqNkc1u1DAURi0EEkPhCbqJxBJluP6L7eV0KGVQpUpNWVtOcj14NBMHJ6PC2-M0VdmysmWd890rf4RcUlhTCubz9_phc1-vGTBYM6NVJfkrsmJU0pJKLl-TFTXclFSAeEvejeMBoGLK8BW5q88DpiH8xmNxFc9959Kf8sqN2BXX3R6LLzi2KQxTiH2xOe5jCtPPU-FjKurNfbE7uczUuD9hP7kZek_eeHcc8cPzeUF-fL1-2H4rb-9udtvNbdkK0FNpoBPCtEqJpnNcA_NGcuqFFNpgh4o1FFE61aL3lResEb7hWWAVopCN5Bdkt-R20R3skMIpL26jC_bpIaa9dWkK7RFtI1wehpryHO-1016Ba0XO79A7MWd9XLKGFH-dcZzsIZ5Tn9e3TEClgHE-U3yh2hTHMaF_mUrBzi3YpQU7t2CfW8jWp8V6xCb6sQ3Yt_hiAoDkmrJK5BuoTOv_p7dh-fJtrm3K6uWiBsR_igEtuAH-FweypF8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406702335</pqid></control><display><type>article</type><title>Superpixel Boundary-Based Edge Description Algorithm for SAR Image Segmentation</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Shang, Ronghua ; Lin, Junkai ; Jiao, Licheng ; Yang, Xiaohui ; Li, Yangyang</creator><creatorcontrib>Shang, Ronghua ; Lin, Junkai ; Jiao, Licheng ; Yang, Xiaohui ; Li, Yangyang</creatorcontrib><description>Although various methods can effectively segment synthetic aperture radar (SAR) images, we found that the method combining superpixel and image edge information can get better results. To solve the problem that common SAR image segmentation methods often segment pixels incorrectly in edge region, a superpixel boundary-based edge description algorithm (SpBED) is proposed. First, an edge detection method with three edge detectors is used. Therefore, accurate strong edges of SAR images can be extracted, and false edges that are easy to appear in a single detection method can be effectively eliminated. Then the weak edges of the image are extracted by superpixel generation algorithm. The extracted weak edges can supplement the edge information that is difficult to extract by edge detection. Superpixel boundaries are also used to carry the strong edges, so that the strong and weak edges can be completely represented by superpixel boundaries. Finally, boundary constraint superpixel smoothing is used to reduce the effects of noise, and k-means algorithm is performed on superpixels. Since edge information is carried by superpixels, it effectively guarantees the segmentation accuracy in edge region. Compared with seven state-of-the-art algorithms, segmentation results on simulated images and real images demonstrate the effectiveness of the proposed SpBED.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.2987653</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Algorithms ; Boundaries ; Clustering algorithms ; Computer simulation ; Detection ; Detectors ; Edge detection ; Engineering ; Engineering, Electrical &amp; Electronic ; Geography, Physical ; Image edge detection ; Image processing ; Image segmentation ; Imaging Science &amp; Photographic Technology ; Linear programming ; Methods ; Noise reduction ; Partitioning algorithms ; Physical Geography ; Physical Sciences ; Radar imaging ; Radar polarimetry ; Remote Sensing ; SAR (radar) ; Science &amp; Technology ; superpixel ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Technology ; unsupervised segmentation ; weak edge</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.1972-1985</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000538126400007</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c408t-90d449c774bda3802f9531f45489ede72b1ee5a7ceff6f42b4fb349c26ee45b53</citedby><cites>FETCH-LOGICAL-c408t-90d449c774bda3802f9531f45489ede72b1ee5a7ceff6f42b4fb349c26ee45b53</cites><orcidid>0000-0001-9124-696X ; 0000-0003-3354-9617 ; 0000-0002-9669-6043 ; 0000-0002-6423-6798 ; 0000-0002-1328-8889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2100,2112,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Shang, Ronghua</creatorcontrib><creatorcontrib>Lin, Junkai</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><creatorcontrib>Yang, Xiaohui</creatorcontrib><creatorcontrib>Li, Yangyang</creatorcontrib><title>Superpixel Boundary-Based Edge Description Algorithm for SAR Image Segmentation</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><addtitle>IEEE J-STARS</addtitle><description>Although various methods can effectively segment synthetic aperture radar (SAR) images, we found that the method combining superpixel and image edge information can get better results. To solve the problem that common SAR image segmentation methods often segment pixels incorrectly in edge region, a superpixel boundary-based edge description algorithm (SpBED) is proposed. First, an edge detection method with three edge detectors is used. Therefore, accurate strong edges of SAR images can be extracted, and false edges that are easy to appear in a single detection method can be effectively eliminated. Then the weak edges of the image are extracted by superpixel generation algorithm. The extracted weak edges can supplement the edge information that is difficult to extract by edge detection. Superpixel boundaries are also used to carry the strong edges, so that the strong and weak edges can be completely represented by superpixel boundaries. Finally, boundary constraint superpixel smoothing is used to reduce the effects of noise, and k-means algorithm is performed on superpixels. Since edge information is carried by superpixels, it effectively guarantees the segmentation accuracy in edge region. Compared with seven state-of-the-art algorithms, segmentation results on simulated images and real images demonstrate the effectiveness of the proposed SpBED.</description><subject>Algorithms</subject><subject>Boundaries</subject><subject>Clustering algorithms</subject><subject>Computer simulation</subject><subject>Detection</subject><subject>Detectors</subject><subject>Edge detection</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Geography, Physical</subject><subject>Image edge detection</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Imaging Science &amp; Photographic Technology</subject><subject>Linear programming</subject><subject>Methods</subject><subject>Noise reduction</subject><subject>Partitioning algorithms</subject><subject>Physical Geography</subject><subject>Physical Sciences</subject><subject>Radar imaging</subject><subject>Radar polarimetry</subject><subject>Remote Sensing</subject><subject>SAR (radar)</subject><subject>Science &amp; Technology</subject><subject>superpixel</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Technology</subject><subject>unsupervised segmentation</subject><subject>weak edge</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkc1u1DAURi0EEkPhCbqJxBJluP6L7eV0KGVQpUpNWVtOcj14NBMHJ6PC2-M0VdmysmWd890rf4RcUlhTCubz9_phc1-vGTBYM6NVJfkrsmJU0pJKLl-TFTXclFSAeEvejeMBoGLK8BW5q88DpiH8xmNxFc9959Kf8sqN2BXX3R6LLzi2KQxTiH2xOe5jCtPPU-FjKurNfbE7uczUuD9hP7kZek_eeHcc8cPzeUF-fL1-2H4rb-9udtvNbdkK0FNpoBPCtEqJpnNcA_NGcuqFFNpgh4o1FFE61aL3lResEb7hWWAVopCN5Bdkt-R20R3skMIpL26jC_bpIaa9dWkK7RFtI1wehpryHO-1016Ba0XO79A7MWd9XLKGFH-dcZzsIZ5Tn9e3TEClgHE-U3yh2hTHMaF_mUrBzi3YpQU7t2CfW8jWp8V6xCb6sQ3Yt_hiAoDkmrJK5BuoTOv_p7dh-fJtrm3K6uWiBsR_igEtuAH-FweypF8</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Shang, Ronghua</creator><creator>Lin, Junkai</creator><creator>Jiao, Licheng</creator><creator>Yang, Xiaohui</creator><creator>Li, Yangyang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9124-696X</orcidid><orcidid>https://orcid.org/0000-0003-3354-9617</orcidid><orcidid>https://orcid.org/0000-0002-9669-6043</orcidid><orcidid>https://orcid.org/0000-0002-6423-6798</orcidid><orcidid>https://orcid.org/0000-0002-1328-8889</orcidid></search><sort><creationdate>2020</creationdate><title>Superpixel Boundary-Based Edge Description Algorithm for SAR Image Segmentation</title><author>Shang, Ronghua ; Lin, Junkai ; Jiao, Licheng ; Yang, Xiaohui ; Li, Yangyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-90d449c774bda3802f9531f45489ede72b1ee5a7ceff6f42b4fb349c26ee45b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Boundaries</topic><topic>Clustering algorithms</topic><topic>Computer simulation</topic><topic>Detection</topic><topic>Detectors</topic><topic>Edge detection</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Geography, Physical</topic><topic>Image edge detection</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Imaging Science &amp; Photographic Technology</topic><topic>Linear programming</topic><topic>Methods</topic><topic>Noise reduction</topic><topic>Partitioning algorithms</topic><topic>Physical Geography</topic><topic>Physical Sciences</topic><topic>Radar imaging</topic><topic>Radar polarimetry</topic><topic>Remote Sensing</topic><topic>SAR (radar)</topic><topic>Science &amp; Technology</topic><topic>superpixel</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Technology</topic><topic>unsupervised segmentation</topic><topic>weak edge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Ronghua</creatorcontrib><creatorcontrib>Lin, Junkai</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><creatorcontrib>Yang, Xiaohui</creatorcontrib><creatorcontrib>Li, Yangyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Ronghua</au><au>Lin, Junkai</au><au>Jiao, Licheng</au><au>Yang, Xiaohui</au><au>Li, Yangyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superpixel Boundary-Based Edge Description Algorithm for SAR Image Segmentation</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><stitle>IEEE J-STARS</stitle><date>2020</date><risdate>2020</risdate><volume>13</volume><spage>1972</spage><epage>1985</epage><pages>1972-1985</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Although various methods can effectively segment synthetic aperture radar (SAR) images, we found that the method combining superpixel and image edge information can get better results. To solve the problem that common SAR image segmentation methods often segment pixels incorrectly in edge region, a superpixel boundary-based edge description algorithm (SpBED) is proposed. First, an edge detection method with three edge detectors is used. Therefore, accurate strong edges of SAR images can be extracted, and false edges that are easy to appear in a single detection method can be effectively eliminated. Then the weak edges of the image are extracted by superpixel generation algorithm. The extracted weak edges can supplement the edge information that is difficult to extract by edge detection. Superpixel boundaries are also used to carry the strong edges, so that the strong and weak edges can be completely represented by superpixel boundaries. Finally, boundary constraint superpixel smoothing is used to reduce the effects of noise, and k-means algorithm is performed on superpixels. Since edge information is carried by superpixels, it effectively guarantees the segmentation accuracy in edge region. Compared with seven state-of-the-art algorithms, segmentation results on simulated images and real images demonstrate the effectiveness of the proposed SpBED.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.2987653</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9124-696X</orcidid><orcidid>https://orcid.org/0000-0003-3354-9617</orcidid><orcidid>https://orcid.org/0000-0002-9669-6043</orcidid><orcidid>https://orcid.org/0000-0002-6423-6798</orcidid><orcidid>https://orcid.org/0000-0002-1328-8889</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.1972-1985
issn 1939-1404
2151-1535
language eng
recordid cdi_proquest_journals_2406702335
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Boundaries
Clustering algorithms
Computer simulation
Detection
Detectors
Edge detection
Engineering
Engineering, Electrical & Electronic
Geography, Physical
Image edge detection
Image processing
Image segmentation
Imaging Science & Photographic Technology
Linear programming
Methods
Noise reduction
Partitioning algorithms
Physical Geography
Physical Sciences
Radar imaging
Radar polarimetry
Remote Sensing
SAR (radar)
Science & Technology
superpixel
Synthetic aperture radar
synthetic aperture radar (SAR)
Technology
unsupervised segmentation
weak edge
title Superpixel Boundary-Based Edge Description Algorithm for SAR Image Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superpixel%20Boundary-Based%20Edge%20Description%20Algorithm%20for%20SAR%20Image%20Segmentation&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Shang,%20Ronghua&rft.date=2020&rft.volume=13&rft.spage=1972&rft.epage=1985&rft.pages=1972-1985&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.2987653&rft_dat=%3Cproquest_webof%3E2406702335%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406702335&rft_id=info:pmid/&rft_ieee_id=9084390&rft_doaj_id=oai_doaj_org_article_b4ad44e813454f8a8f70ac4ee5defa45&rfr_iscdi=true