On Coloring Rectangular and Diagonal Grid Graphs for Multipatterning and DSA Lithography

Rectangular grid graph (RGG) and diagonal grid graph (DGG) are induced subgraphs of a rectangular or diagonal grid, respectively. Their k -coloring problem has direct applications in printing contact/via layouts by multipatterning lithography (MPL). However, the problem in general is computationall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2020-06, Vol.39 (6), p.1205-1216
Hauptverfasser: Guo, Daifeng, Zhang, Hongbo, Wong, Martin D. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rectangular grid graph (RGG) and diagonal grid graph (DGG) are induced subgraphs of a rectangular or diagonal grid, respectively. Their k -coloring problem has direct applications in printing contact/via layouts by multipatterning lithography (MPL). However, the problem in general is computationally difficult for k>2 , while it remains an open question on grid graphs due to their regularity and sparsity. On the other hand, directed self-assembly (DSA) technique can work with MPL to optimize the graph by grouping neighboring vertices such that k can be reduced, but the problem of deploying the grouping for coloring is even more intractable. In this paper, we study both of the k -coloring problems, with and without DSA grouping, on RGG and DGG. Without grouping, a complete k -coloring analysis is conducted and particularly the NP-completeness of 3-coloring on a diagonal grid is proved. When considering grouping, we present a 3-coloring solution and prove the NP-completeness to solve the problem of k=2 .
ISSN:0278-0070
1937-4151
DOI:10.1109/TCAD.2019.2915326