WiFind: Driver Fatigue Detection with Fine-Grained Wi-Fi Signal Features

Driver fatigue is a leading factor in road accidents that can cause severe fatalities. Existing fatigue detection works focus on vision and electroencephalography (EEG) based means of detection. However, vision-based approaches suffer from view-blocking or vision distortion problems and EEG-based sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on big data 2020-06, Vol.6 (2), p.269-282
Hauptverfasser: Jia, Weijia, Peng, Hongjian, Ruan, Na, Tang, Zhiqing, Zhao, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 282
container_issue 2
container_start_page 269
container_title IEEE transactions on big data
container_volume 6
creator Jia, Weijia
Peng, Hongjian
Ruan, Na
Tang, Zhiqing
Zhao, Wei
description Driver fatigue is a leading factor in road accidents that can cause severe fatalities. Existing fatigue detection works focus on vision and electroencephalography (EEG) based means of detection. However, vision-based approaches suffer from view-blocking or vision distortion problems and EEG-based systems are intrusive, and the drivers have to use/wear the devices with inconvenience or additional costs. In our work, we propose a novel Wi-Fi signals based fatigue detection approach, called WiFind to overcome the drawbacks as associated with the current works. WiFind is simple and (wearable) device-free. It can detect the fatigue symptoms in the vehicle without relying on any visual image or video. By applying self-adaptive method, it can recognize the body features of drivers in multiple modes. It applies Hilbert-Huang transform (HHT) based pattern extract method results in accuracy increase in motion detection mode. WiFind can be easily deployed in a commodity Wi-Fi infrastructure, and we have evaluated its performance in real driving environments. The experimental results have shown that WiFind can achieve the recognition accuracy of 89.6 percent in a single driver scenario.
doi_str_mv 10.1109/TBDATA.2018.2848969
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2406700823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8395044</ieee_id><sourcerecordid>2406700823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-5f7db31fb50ce5ea5c31bbed95d273252c5bd9c5f6a892ae2c82420aca065aa73</originalsourceid><addsrcrecordid>eNo9kMFOwkAQhjdGEwnyBFyaeC7Ozna7XW8IFkxIPIjhuNlup7gEKW6Lxre3pMTTP4f_m8x8jI05TDgH_bB-mk_X0wkCzyaYJZlO9RUboFAYI-j0-jwLjJXScMtGTbMDAJ4CCI0Dttz43B_Kx2ge_DeFKLet354omlNLrvX1Ifrx7UfUdSheBNtFGW18nPvozW8Pdh_lZNtToOaO3VR239DokkP2nj-vZ8t49bp4mU1XsUNUbSwrVRaCV4UER5KsdIIXBZValqgESnSyKLWTVWozjZbQZZggWGchldYqMWT3_d5jqL9O1LRmV59Cd0ljMIFUAWTdu0Mm-pYLddMEqswx-E8bfg0Hc7ZmemvmbM1crHXUuKc8Ef0TmdASkkT8AfPTZ70</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406700823</pqid></control><display><type>article</type><title>WiFind: Driver Fatigue Detection with Fine-Grained Wi-Fi Signal Features</title><source>IEEE Electronic Library (IEL)</source><creator>Jia, Weijia ; Peng, Hongjian ; Ruan, Na ; Tang, Zhiqing ; Zhao, Wei</creator><creatorcontrib>Jia, Weijia ; Peng, Hongjian ; Ruan, Na ; Tang, Zhiqing ; Zhao, Wei</creatorcontrib><description>Driver fatigue is a leading factor in road accidents that can cause severe fatalities. Existing fatigue detection works focus on vision and electroencephalography (EEG) based means of detection. However, vision-based approaches suffer from view-blocking or vision distortion problems and EEG-based systems are intrusive, and the drivers have to use/wear the devices with inconvenience or additional costs. In our work, we propose a novel Wi-Fi signals based fatigue detection approach, called WiFind to overcome the drawbacks as associated with the current works. WiFind is simple and (wearable) device-free. It can detect the fatigue symptoms in the vehicle without relying on any visual image or video. By applying self-adaptive method, it can recognize the body features of drivers in multiple modes. It applies Hilbert-Huang transform (HHT) based pattern extract method results in accuracy increase in motion detection mode. WiFind can be easily deployed in a commodity Wi-Fi infrastructure, and we have evaluated its performance in real driving environments. The experimental results have shown that WiFind can achieve the recognition accuracy of 89.6 percent in a single driver scenario.</description><identifier>ISSN: 2332-7790</identifier><identifier>EISSN: 2372-2096</identifier><identifier>DOI: 10.1109/TBDATA.2018.2848969</identifier><identifier>CODEN: ITBDAX</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>channel state information ; Driver fatigue ; Driver fatigue detection ; Electroencephalography ; Fatigue ; Feature extraction ; Feature recognition ; Hilbert transformation ; Monitoring ; Motion perception ; OFDM ; Vehicles ; Vision ; Wireless communication ; Wireless fidelity ; wireless signal processing</subject><ispartof>IEEE transactions on big data, 2020-06, Vol.6 (2), p.269-282</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-5f7db31fb50ce5ea5c31bbed95d273252c5bd9c5f6a892ae2c82420aca065aa73</citedby><cites>FETCH-LOGICAL-c227t-5f7db31fb50ce5ea5c31bbed95d273252c5bd9c5f6a892ae2c82420aca065aa73</cites><orcidid>0000-0002-2214-8546 ; 0000-0002-9375-4818 ; 0000-0003-1000-3937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8395044$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27902,27903,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8395044$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jia, Weijia</creatorcontrib><creatorcontrib>Peng, Hongjian</creatorcontrib><creatorcontrib>Ruan, Na</creatorcontrib><creatorcontrib>Tang, Zhiqing</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><title>WiFind: Driver Fatigue Detection with Fine-Grained Wi-Fi Signal Features</title><title>IEEE transactions on big data</title><addtitle>TBData</addtitle><description>Driver fatigue is a leading factor in road accidents that can cause severe fatalities. Existing fatigue detection works focus on vision and electroencephalography (EEG) based means of detection. However, vision-based approaches suffer from view-blocking or vision distortion problems and EEG-based systems are intrusive, and the drivers have to use/wear the devices with inconvenience or additional costs. In our work, we propose a novel Wi-Fi signals based fatigue detection approach, called WiFind to overcome the drawbacks as associated with the current works. WiFind is simple and (wearable) device-free. It can detect the fatigue symptoms in the vehicle without relying on any visual image or video. By applying self-adaptive method, it can recognize the body features of drivers in multiple modes. It applies Hilbert-Huang transform (HHT) based pattern extract method results in accuracy increase in motion detection mode. WiFind can be easily deployed in a commodity Wi-Fi infrastructure, and we have evaluated its performance in real driving environments. The experimental results have shown that WiFind can achieve the recognition accuracy of 89.6 percent in a single driver scenario.</description><subject>channel state information</subject><subject>Driver fatigue</subject><subject>Driver fatigue detection</subject><subject>Electroencephalography</subject><subject>Fatigue</subject><subject>Feature extraction</subject><subject>Feature recognition</subject><subject>Hilbert transformation</subject><subject>Monitoring</subject><subject>Motion perception</subject><subject>OFDM</subject><subject>Vehicles</subject><subject>Vision</subject><subject>Wireless communication</subject><subject>Wireless fidelity</subject><subject>wireless signal processing</subject><issn>2332-7790</issn><issn>2372-2096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOwkAQhjdGEwnyBFyaeC7Ozna7XW8IFkxIPIjhuNlup7gEKW6Lxre3pMTTP4f_m8x8jI05TDgH_bB-mk_X0wkCzyaYJZlO9RUboFAYI-j0-jwLjJXScMtGTbMDAJ4CCI0Dttz43B_Kx2ge_DeFKLet354omlNLrvX1Ifrx7UfUdSheBNtFGW18nPvozW8Pdh_lZNtToOaO3VR239DokkP2nj-vZ8t49bp4mU1XsUNUbSwrVRaCV4UER5KsdIIXBZValqgESnSyKLWTVWozjZbQZZggWGchldYqMWT3_d5jqL9O1LRmV59Cd0ljMIFUAWTdu0Mm-pYLddMEqswx-E8bfg0Hc7ZmemvmbM1crHXUuKc8Ef0TmdASkkT8AfPTZ70</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Jia, Weijia</creator><creator>Peng, Hongjian</creator><creator>Ruan, Na</creator><creator>Tang, Zhiqing</creator><creator>Zhao, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2214-8546</orcidid><orcidid>https://orcid.org/0000-0002-9375-4818</orcidid><orcidid>https://orcid.org/0000-0003-1000-3937</orcidid></search><sort><creationdate>20200601</creationdate><title>WiFind: Driver Fatigue Detection with Fine-Grained Wi-Fi Signal Features</title><author>Jia, Weijia ; Peng, Hongjian ; Ruan, Na ; Tang, Zhiqing ; Zhao, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-5f7db31fb50ce5ea5c31bbed95d273252c5bd9c5f6a892ae2c82420aca065aa73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>channel state information</topic><topic>Driver fatigue</topic><topic>Driver fatigue detection</topic><topic>Electroencephalography</topic><topic>Fatigue</topic><topic>Feature extraction</topic><topic>Feature recognition</topic><topic>Hilbert transformation</topic><topic>Monitoring</topic><topic>Motion perception</topic><topic>OFDM</topic><topic>Vehicles</topic><topic>Vision</topic><topic>Wireless communication</topic><topic>Wireless fidelity</topic><topic>wireless signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Weijia</creatorcontrib><creatorcontrib>Peng, Hongjian</creatorcontrib><creatorcontrib>Ruan, Na</creatorcontrib><creatorcontrib>Tang, Zhiqing</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on big data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jia, Weijia</au><au>Peng, Hongjian</au><au>Ruan, Na</au><au>Tang, Zhiqing</au><au>Zhao, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WiFind: Driver Fatigue Detection with Fine-Grained Wi-Fi Signal Features</atitle><jtitle>IEEE transactions on big data</jtitle><stitle>TBData</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>6</volume><issue>2</issue><spage>269</spage><epage>282</epage><pages>269-282</pages><issn>2332-7790</issn><eissn>2372-2096</eissn><coden>ITBDAX</coden><abstract>Driver fatigue is a leading factor in road accidents that can cause severe fatalities. Existing fatigue detection works focus on vision and electroencephalography (EEG) based means of detection. However, vision-based approaches suffer from view-blocking or vision distortion problems and EEG-based systems are intrusive, and the drivers have to use/wear the devices with inconvenience or additional costs. In our work, we propose a novel Wi-Fi signals based fatigue detection approach, called WiFind to overcome the drawbacks as associated with the current works. WiFind is simple and (wearable) device-free. It can detect the fatigue symptoms in the vehicle without relying on any visual image or video. By applying self-adaptive method, it can recognize the body features of drivers in multiple modes. It applies Hilbert-Huang transform (HHT) based pattern extract method results in accuracy increase in motion detection mode. WiFind can be easily deployed in a commodity Wi-Fi infrastructure, and we have evaluated its performance in real driving environments. The experimental results have shown that WiFind can achieve the recognition accuracy of 89.6 percent in a single driver scenario.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TBDATA.2018.2848969</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2214-8546</orcidid><orcidid>https://orcid.org/0000-0002-9375-4818</orcidid><orcidid>https://orcid.org/0000-0003-1000-3937</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2332-7790
ispartof IEEE transactions on big data, 2020-06, Vol.6 (2), p.269-282
issn 2332-7790
2372-2096
language eng
recordid cdi_proquest_journals_2406700823
source IEEE Electronic Library (IEL)
subjects channel state information
Driver fatigue
Driver fatigue detection
Electroencephalography
Fatigue
Feature extraction
Feature recognition
Hilbert transformation
Monitoring
Motion perception
OFDM
Vehicles
Vision
Wireless communication
Wireless fidelity
wireless signal processing
title WiFind: Driver Fatigue Detection with Fine-Grained Wi-Fi Signal Features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WiFind:%20Driver%20Fatigue%20Detection%20with%20Fine-Grained%20Wi-Fi%20Signal%20Features&rft.jtitle=IEEE%20transactions%20on%20big%20data&rft.au=Jia,%20Weijia&rft.date=2020-06-01&rft.volume=6&rft.issue=2&rft.spage=269&rft.epage=282&rft.pages=269-282&rft.issn=2332-7790&rft.eissn=2372-2096&rft.coden=ITBDAX&rft_id=info:doi/10.1109/TBDATA.2018.2848969&rft_dat=%3Cproquest_RIE%3E2406700823%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406700823&rft_id=info:pmid/&rft_ieee_id=8395044&rfr_iscdi=true