WiFind: Driver Fatigue Detection with Fine-Grained Wi-Fi Signal Features
Driver fatigue is a leading factor in road accidents that can cause severe fatalities. Existing fatigue detection works focus on vision and electroencephalography (EEG) based means of detection. However, vision-based approaches suffer from view-blocking or vision distortion problems and EEG-based sy...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on big data 2020-06, Vol.6 (2), p.269-282 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 282 |
---|---|
container_issue | 2 |
container_start_page | 269 |
container_title | IEEE transactions on big data |
container_volume | 6 |
creator | Jia, Weijia Peng, Hongjian Ruan, Na Tang, Zhiqing Zhao, Wei |
description | Driver fatigue is a leading factor in road accidents that can cause severe fatalities. Existing fatigue detection works focus on vision and electroencephalography (EEG) based means of detection. However, vision-based approaches suffer from view-blocking or vision distortion problems and EEG-based systems are intrusive, and the drivers have to use/wear the devices with inconvenience or additional costs. In our work, we propose a novel Wi-Fi signals based fatigue detection approach, called WiFind to overcome the drawbacks as associated with the current works. WiFind is simple and (wearable) device-free. It can detect the fatigue symptoms in the vehicle without relying on any visual image or video. By applying self-adaptive method, it can recognize the body features of drivers in multiple modes. It applies Hilbert-Huang transform (HHT) based pattern extract method results in accuracy increase in motion detection mode. WiFind can be easily deployed in a commodity Wi-Fi infrastructure, and we have evaluated its performance in real driving environments. The experimental results have shown that WiFind can achieve the recognition accuracy of 89.6 percent in a single driver scenario. |
doi_str_mv | 10.1109/TBDATA.2018.2848969 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2406700823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8395044</ieee_id><sourcerecordid>2406700823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-5f7db31fb50ce5ea5c31bbed95d273252c5bd9c5f6a892ae2c82420aca065aa73</originalsourceid><addsrcrecordid>eNo9kMFOwkAQhjdGEwnyBFyaeC7Ozna7XW8IFkxIPIjhuNlup7gEKW6Lxre3pMTTP4f_m8x8jI05TDgH_bB-mk_X0wkCzyaYJZlO9RUboFAYI-j0-jwLjJXScMtGTbMDAJ4CCI0Dttz43B_Kx2ge_DeFKLet354omlNLrvX1Ifrx7UfUdSheBNtFGW18nPvozW8Pdh_lZNtToOaO3VR239DokkP2nj-vZ8t49bp4mU1XsUNUbSwrVRaCV4UER5KsdIIXBZValqgESnSyKLWTVWozjZbQZZggWGchldYqMWT3_d5jqL9O1LRmV59Cd0ljMIFUAWTdu0Mm-pYLddMEqswx-E8bfg0Hc7ZmemvmbM1crHXUuKc8Ef0TmdASkkT8AfPTZ70</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406700823</pqid></control><display><type>article</type><title>WiFind: Driver Fatigue Detection with Fine-Grained Wi-Fi Signal Features</title><source>IEEE Electronic Library (IEL)</source><creator>Jia, Weijia ; Peng, Hongjian ; Ruan, Na ; Tang, Zhiqing ; Zhao, Wei</creator><creatorcontrib>Jia, Weijia ; Peng, Hongjian ; Ruan, Na ; Tang, Zhiqing ; Zhao, Wei</creatorcontrib><description>Driver fatigue is a leading factor in road accidents that can cause severe fatalities. Existing fatigue detection works focus on vision and electroencephalography (EEG) based means of detection. However, vision-based approaches suffer from view-blocking or vision distortion problems and EEG-based systems are intrusive, and the drivers have to use/wear the devices with inconvenience or additional costs. In our work, we propose a novel Wi-Fi signals based fatigue detection approach, called WiFind to overcome the drawbacks as associated with the current works. WiFind is simple and (wearable) device-free. It can detect the fatigue symptoms in the vehicle without relying on any visual image or video. By applying self-adaptive method, it can recognize the body features of drivers in multiple modes. It applies Hilbert-Huang transform (HHT) based pattern extract method results in accuracy increase in motion detection mode. WiFind can be easily deployed in a commodity Wi-Fi infrastructure, and we have evaluated its performance in real driving environments. The experimental results have shown that WiFind can achieve the recognition accuracy of 89.6 percent in a single driver scenario.</description><identifier>ISSN: 2332-7790</identifier><identifier>EISSN: 2372-2096</identifier><identifier>DOI: 10.1109/TBDATA.2018.2848969</identifier><identifier>CODEN: ITBDAX</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>channel state information ; Driver fatigue ; Driver fatigue detection ; Electroencephalography ; Fatigue ; Feature extraction ; Feature recognition ; Hilbert transformation ; Monitoring ; Motion perception ; OFDM ; Vehicles ; Vision ; Wireless communication ; Wireless fidelity ; wireless signal processing</subject><ispartof>IEEE transactions on big data, 2020-06, Vol.6 (2), p.269-282</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-5f7db31fb50ce5ea5c31bbed95d273252c5bd9c5f6a892ae2c82420aca065aa73</citedby><cites>FETCH-LOGICAL-c227t-5f7db31fb50ce5ea5c31bbed95d273252c5bd9c5f6a892ae2c82420aca065aa73</cites><orcidid>0000-0002-2214-8546 ; 0000-0002-9375-4818 ; 0000-0003-1000-3937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8395044$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27902,27903,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8395044$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jia, Weijia</creatorcontrib><creatorcontrib>Peng, Hongjian</creatorcontrib><creatorcontrib>Ruan, Na</creatorcontrib><creatorcontrib>Tang, Zhiqing</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><title>WiFind: Driver Fatigue Detection with Fine-Grained Wi-Fi Signal Features</title><title>IEEE transactions on big data</title><addtitle>TBData</addtitle><description>Driver fatigue is a leading factor in road accidents that can cause severe fatalities. Existing fatigue detection works focus on vision and electroencephalography (EEG) based means of detection. However, vision-based approaches suffer from view-blocking or vision distortion problems and EEG-based systems are intrusive, and the drivers have to use/wear the devices with inconvenience or additional costs. In our work, we propose a novel Wi-Fi signals based fatigue detection approach, called WiFind to overcome the drawbacks as associated with the current works. WiFind is simple and (wearable) device-free. It can detect the fatigue symptoms in the vehicle without relying on any visual image or video. By applying self-adaptive method, it can recognize the body features of drivers in multiple modes. It applies Hilbert-Huang transform (HHT) based pattern extract method results in accuracy increase in motion detection mode. WiFind can be easily deployed in a commodity Wi-Fi infrastructure, and we have evaluated its performance in real driving environments. The experimental results have shown that WiFind can achieve the recognition accuracy of 89.6 percent in a single driver scenario.</description><subject>channel state information</subject><subject>Driver fatigue</subject><subject>Driver fatigue detection</subject><subject>Electroencephalography</subject><subject>Fatigue</subject><subject>Feature extraction</subject><subject>Feature recognition</subject><subject>Hilbert transformation</subject><subject>Monitoring</subject><subject>Motion perception</subject><subject>OFDM</subject><subject>Vehicles</subject><subject>Vision</subject><subject>Wireless communication</subject><subject>Wireless fidelity</subject><subject>wireless signal processing</subject><issn>2332-7790</issn><issn>2372-2096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOwkAQhjdGEwnyBFyaeC7Ozna7XW8IFkxIPIjhuNlup7gEKW6Lxre3pMTTP4f_m8x8jI05TDgH_bB-mk_X0wkCzyaYJZlO9RUboFAYI-j0-jwLjJXScMtGTbMDAJ4CCI0Dttz43B_Kx2ge_DeFKLet354omlNLrvX1Ifrx7UfUdSheBNtFGW18nPvozW8Pdh_lZNtToOaO3VR239DokkP2nj-vZ8t49bp4mU1XsUNUbSwrVRaCV4UER5KsdIIXBZValqgESnSyKLWTVWozjZbQZZggWGchldYqMWT3_d5jqL9O1LRmV59Cd0ljMIFUAWTdu0Mm-pYLddMEqswx-E8bfg0Hc7ZmemvmbM1crHXUuKc8Ef0TmdASkkT8AfPTZ70</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Jia, Weijia</creator><creator>Peng, Hongjian</creator><creator>Ruan, Na</creator><creator>Tang, Zhiqing</creator><creator>Zhao, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2214-8546</orcidid><orcidid>https://orcid.org/0000-0002-9375-4818</orcidid><orcidid>https://orcid.org/0000-0003-1000-3937</orcidid></search><sort><creationdate>20200601</creationdate><title>WiFind: Driver Fatigue Detection with Fine-Grained Wi-Fi Signal Features</title><author>Jia, Weijia ; Peng, Hongjian ; Ruan, Na ; Tang, Zhiqing ; Zhao, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-5f7db31fb50ce5ea5c31bbed95d273252c5bd9c5f6a892ae2c82420aca065aa73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>channel state information</topic><topic>Driver fatigue</topic><topic>Driver fatigue detection</topic><topic>Electroencephalography</topic><topic>Fatigue</topic><topic>Feature extraction</topic><topic>Feature recognition</topic><topic>Hilbert transformation</topic><topic>Monitoring</topic><topic>Motion perception</topic><topic>OFDM</topic><topic>Vehicles</topic><topic>Vision</topic><topic>Wireless communication</topic><topic>Wireless fidelity</topic><topic>wireless signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Weijia</creatorcontrib><creatorcontrib>Peng, Hongjian</creatorcontrib><creatorcontrib>Ruan, Na</creatorcontrib><creatorcontrib>Tang, Zhiqing</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on big data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jia, Weijia</au><au>Peng, Hongjian</au><au>Ruan, Na</au><au>Tang, Zhiqing</au><au>Zhao, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WiFind: Driver Fatigue Detection with Fine-Grained Wi-Fi Signal Features</atitle><jtitle>IEEE transactions on big data</jtitle><stitle>TBData</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>6</volume><issue>2</issue><spage>269</spage><epage>282</epage><pages>269-282</pages><issn>2332-7790</issn><eissn>2372-2096</eissn><coden>ITBDAX</coden><abstract>Driver fatigue is a leading factor in road accidents that can cause severe fatalities. Existing fatigue detection works focus on vision and electroencephalography (EEG) based means of detection. However, vision-based approaches suffer from view-blocking or vision distortion problems and EEG-based systems are intrusive, and the drivers have to use/wear the devices with inconvenience or additional costs. In our work, we propose a novel Wi-Fi signals based fatigue detection approach, called WiFind to overcome the drawbacks as associated with the current works. WiFind is simple and (wearable) device-free. It can detect the fatigue symptoms in the vehicle without relying on any visual image or video. By applying self-adaptive method, it can recognize the body features of drivers in multiple modes. It applies Hilbert-Huang transform (HHT) based pattern extract method results in accuracy increase in motion detection mode. WiFind can be easily deployed in a commodity Wi-Fi infrastructure, and we have evaluated its performance in real driving environments. The experimental results have shown that WiFind can achieve the recognition accuracy of 89.6 percent in a single driver scenario.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TBDATA.2018.2848969</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2214-8546</orcidid><orcidid>https://orcid.org/0000-0002-9375-4818</orcidid><orcidid>https://orcid.org/0000-0003-1000-3937</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2332-7790 |
ispartof | IEEE transactions on big data, 2020-06, Vol.6 (2), p.269-282 |
issn | 2332-7790 2372-2096 |
language | eng |
recordid | cdi_proquest_journals_2406700823 |
source | IEEE Electronic Library (IEL) |
subjects | channel state information Driver fatigue Driver fatigue detection Electroencephalography Fatigue Feature extraction Feature recognition Hilbert transformation Monitoring Motion perception OFDM Vehicles Vision Wireless communication Wireless fidelity wireless signal processing |
title | WiFind: Driver Fatigue Detection with Fine-Grained Wi-Fi Signal Features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WiFind:%20Driver%20Fatigue%20Detection%20with%20Fine-Grained%20Wi-Fi%20Signal%20Features&rft.jtitle=IEEE%20transactions%20on%20big%20data&rft.au=Jia,%20Weijia&rft.date=2020-06-01&rft.volume=6&rft.issue=2&rft.spage=269&rft.epage=282&rft.pages=269-282&rft.issn=2332-7790&rft.eissn=2372-2096&rft.coden=ITBDAX&rft_id=info:doi/10.1109/TBDATA.2018.2848969&rft_dat=%3Cproquest_RIE%3E2406700823%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406700823&rft_id=info:pmid/&rft_ieee_id=8395044&rfr_iscdi=true |