Development of wideband orthomode transducers for FAST cryogenic receiver system

This paper describes the design, construction, and performance of the wideband orthomode transducers (OMTs) for the L- (1.2-1.8 GHz), the S- (2-3 GHz) and the P- (0.56-1.12 GHz) band receiver systems of the Five-hundred-meter Aperture Spherical radio Telescope (FAST). These OMTs operate at the cryog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research in astronomy and astrophysics 2020-05, Vol.20 (5), p.71
Hauptverfasser: Fan, Jin, Zhu, Kai, Gan, Heng-Qian, Jiang, Peng, Yang, Jian, Cao, Yang, Liu, Hong-Fei, Zhang, Hang, Guo, Ming-Lei, Shi, Xiang-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 71
container_title Research in astronomy and astrophysics
container_volume 20
creator Fan, Jin
Zhu, Kai
Gan, Heng-Qian
Jiang, Peng
Yang, Jian
Cao, Yang
Liu, Hong-Fei
Zhang, Hang
Guo, Ming-Lei
Shi, Xiang-Wei
description This paper describes the design, construction, and performance of the wideband orthomode transducers (OMTs) for the L- (1.2-1.8 GHz), the S- (2-3 GHz) and the P- (0.56-1.12 GHz) band receiver systems of the Five-hundred-meter Aperture Spherical radio Telescope (FAST). These OMTs operate at the cryogenic temperature of 70K to reduce their thermal noise contribution to the receiver chains. The development on the FAST L- and S-band quad-ridged waveguide (QRWG) OMTs is carried out based on the theoretical mode analysis. In view of the miniaturization of FAST cryogenic receiver system at P-band, a novel wideband compact bowtie dipole OMT is designed with an octave bandwidth as well as a length of only quarter wavelength. The proposed L-, S- and P-band OMTs are designed and optimized by using Ansys High Frequency Structure Simulator (HFSS), and then manufactured, tested at room temperature. Measurement of FAST cryogenic receiver system noise is also performed with the L-, S- and P-band OMTs installed. The measured results fully comply with the design specifications.
doi_str_mv 10.1088/1674-4527/20/5/71
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2406658930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406658930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-82f507aac38bb63bb09a7626dbead18c94d397524f194eb676a5b88a7a9a1dbf3</originalsourceid><addsrcrecordid>eNp1kU9P3DAQxXOgEpT2A3CL1F7TtR3_PSJaaCUkkIDzaGxPukGbOLWzoP323SgVvbSnkUZvfjPvTVVdcPaFM2s3XBvZSCXMRrCN2hh-Up299U6r96U8M6aV0uKsuv9KL7RL00DjXKeufu0jeRxjnfK8TUOKVM8ZxxL3gXKpu5Tr68uHxzrkQ_pJYx_qTIH6F8p1OZSZhg_Vuw53hT7-qefV0_W3x6vvze3dzY-ry9smSOXmxopOMYMYWuu9br1nDo0WOnrCyG1wMrbOKCE77iR5bTQqby0adMij79rz6mHlllea9h6m3A-YD5Cwh0yFMIcthC3uhuPdUAhiq2wXvISgXQuyjQI8Mx6cR43ERYyBH6mfVuqU0689lRme0z6PRyMgJNNaWdeyo4qvqpBTKZm6t-2cwfICWOKGJW4QDBSYhfx5nenT9BeaEVcFMxymuNhq_iH7P_Y35pGXIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406658930</pqid></control><display><type>article</type><title>Development of wideband orthomode transducers for FAST cryogenic receiver system</title><source>IOP Publishing Journals</source><source>Alma/SFX Local Collection</source><creator>Fan, Jin ; Zhu, Kai ; Gan, Heng-Qian ; Jiang, Peng ; Yang, Jian ; Cao, Yang ; Liu, Hong-Fei ; Zhang, Hang ; Guo, Ming-Lei ; Shi, Xiang-Wei</creator><creatorcontrib>Fan, Jin ; Zhu, Kai ; Gan, Heng-Qian ; Jiang, Peng ; Yang, Jian ; Cao, Yang ; Liu, Hong-Fei ; Zhang, Hang ; Guo, Ming-Lei ; Shi, Xiang-Wei</creatorcontrib><description>This paper describes the design, construction, and performance of the wideband orthomode transducers (OMTs) for the L- (1.2-1.8 GHz), the S- (2-3 GHz) and the P- (0.56-1.12 GHz) band receiver systems of the Five-hundred-meter Aperture Spherical radio Telescope (FAST). These OMTs operate at the cryogenic temperature of 70K to reduce their thermal noise contribution to the receiver chains. The development on the FAST L- and S-band quad-ridged waveguide (QRWG) OMTs is carried out based on the theoretical mode analysis. In view of the miniaturization of FAST cryogenic receiver system at P-band, a novel wideband compact bowtie dipole OMT is designed with an octave bandwidth as well as a length of only quarter wavelength. The proposed L-, S- and P-band OMTs are designed and optimized by using Ansys High Frequency Structure Simulator (HFSS), and then manufactured, tested at room temperature. Measurement of FAST cryogenic receiver system noise is also performed with the L-, S- and P-band OMTs installed. The measured results fully comply with the design specifications.</description><identifier>ISSN: 1674-4527</identifier><identifier>DOI: 10.1088/1674-4527/20/5/71</identifier><language>eng</language><publisher>Beijing: National Astronomical Observatories, CAS and IOP Publishing Ltd</publisher><subject>Apertures ; Bandwidths ; Broadband ; CAD ; Computer aided design ; Cryogenic engineering ; Cryogenic temperature ; Design specifications ; Dipoles ; FAST ; instruments ; Miniaturization ; Noise reduction ; Radio telescopes ; Room temperature ; Superhigh frequencies ; telescopes ; Thermal noise ; Transducers ; Waveguides</subject><ispartof>Research in astronomy and astrophysics, 2020-05, Vol.20 (5), p.71</ispartof><rights>2020 National Astronomical Observatories, CAS and IOP Publishing Ltd.</rights><rights>Copyright IOP Publishing May 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-82f507aac38bb63bb09a7626dbead18c94d397524f194eb676a5b88a7a9a1dbf3</citedby><cites>FETCH-LOGICAL-c459t-82f507aac38bb63bb09a7626dbead18c94d397524f194eb676a5b88a7a9a1dbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1674-4527/20/5/71/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,778,782,883,27911,27912,53833</link.rule.ids><backlink>$$Uhttps://research.chalmers.se/publication/517538$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Jin</creatorcontrib><creatorcontrib>Zhu, Kai</creatorcontrib><creatorcontrib>Gan, Heng-Qian</creatorcontrib><creatorcontrib>Jiang, Peng</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Cao, Yang</creatorcontrib><creatorcontrib>Liu, Hong-Fei</creatorcontrib><creatorcontrib>Zhang, Hang</creatorcontrib><creatorcontrib>Guo, Ming-Lei</creatorcontrib><creatorcontrib>Shi, Xiang-Wei</creatorcontrib><title>Development of wideband orthomode transducers for FAST cryogenic receiver system</title><title>Research in astronomy and astrophysics</title><addtitle>Res. Astron. Astrophys</addtitle><description>This paper describes the design, construction, and performance of the wideband orthomode transducers (OMTs) for the L- (1.2-1.8 GHz), the S- (2-3 GHz) and the P- (0.56-1.12 GHz) band receiver systems of the Five-hundred-meter Aperture Spherical radio Telescope (FAST). These OMTs operate at the cryogenic temperature of 70K to reduce their thermal noise contribution to the receiver chains. The development on the FAST L- and S-band quad-ridged waveguide (QRWG) OMTs is carried out based on the theoretical mode analysis. In view of the miniaturization of FAST cryogenic receiver system at P-band, a novel wideband compact bowtie dipole OMT is designed with an octave bandwidth as well as a length of only quarter wavelength. The proposed L-, S- and P-band OMTs are designed and optimized by using Ansys High Frequency Structure Simulator (HFSS), and then manufactured, tested at room temperature. Measurement of FAST cryogenic receiver system noise is also performed with the L-, S- and P-band OMTs installed. The measured results fully comply with the design specifications.</description><subject>Apertures</subject><subject>Bandwidths</subject><subject>Broadband</subject><subject>CAD</subject><subject>Computer aided design</subject><subject>Cryogenic engineering</subject><subject>Cryogenic temperature</subject><subject>Design specifications</subject><subject>Dipoles</subject><subject>FAST</subject><subject>instruments</subject><subject>Miniaturization</subject><subject>Noise reduction</subject><subject>Radio telescopes</subject><subject>Room temperature</subject><subject>Superhigh frequencies</subject><subject>telescopes</subject><subject>Thermal noise</subject><subject>Transducers</subject><subject>Waveguides</subject><issn>1674-4527</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kU9P3DAQxXOgEpT2A3CL1F7TtR3_PSJaaCUkkIDzaGxPukGbOLWzoP323SgVvbSnkUZvfjPvTVVdcPaFM2s3XBvZSCXMRrCN2hh-Up299U6r96U8M6aV0uKsuv9KL7RL00DjXKeufu0jeRxjnfK8TUOKVM8ZxxL3gXKpu5Tr68uHxzrkQ_pJYx_qTIH6F8p1OZSZhg_Vuw53hT7-qefV0_W3x6vvze3dzY-ry9smSOXmxopOMYMYWuu9br1nDo0WOnrCyG1wMrbOKCE77iR5bTQqby0adMij79rz6mHlllea9h6m3A-YD5Cwh0yFMIcthC3uhuPdUAhiq2wXvISgXQuyjQI8Mx6cR43ERYyBH6mfVuqU0689lRme0z6PRyMgJNNaWdeyo4qvqpBTKZm6t-2cwfICWOKGJW4QDBSYhfx5nenT9BeaEVcFMxymuNhq_iH7P_Y35pGXIw</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Fan, Jin</creator><creator>Zhu, Kai</creator><creator>Gan, Heng-Qian</creator><creator>Jiang, Peng</creator><creator>Yang, Jian</creator><creator>Cao, Yang</creator><creator>Liu, Hong-Fei</creator><creator>Zhang, Hang</creator><creator>Guo, Ming-Lei</creator><creator>Shi, Xiang-Wei</creator><general>National Astronomical Observatories, CAS and IOP Publishing Ltd</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1S</scope></search><sort><creationdate>20200501</creationdate><title>Development of wideband orthomode transducers for FAST cryogenic receiver system</title><author>Fan, Jin ; Zhu, Kai ; Gan, Heng-Qian ; Jiang, Peng ; Yang, Jian ; Cao, Yang ; Liu, Hong-Fei ; Zhang, Hang ; Guo, Ming-Lei ; Shi, Xiang-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-82f507aac38bb63bb09a7626dbead18c94d397524f194eb676a5b88a7a9a1dbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apertures</topic><topic>Bandwidths</topic><topic>Broadband</topic><topic>CAD</topic><topic>Computer aided design</topic><topic>Cryogenic engineering</topic><topic>Cryogenic temperature</topic><topic>Design specifications</topic><topic>Dipoles</topic><topic>FAST</topic><topic>instruments</topic><topic>Miniaturization</topic><topic>Noise reduction</topic><topic>Radio telescopes</topic><topic>Room temperature</topic><topic>Superhigh frequencies</topic><topic>telescopes</topic><topic>Thermal noise</topic><topic>Transducers</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Jin</creatorcontrib><creatorcontrib>Zhu, Kai</creatorcontrib><creatorcontrib>Gan, Heng-Qian</creatorcontrib><creatorcontrib>Jiang, Peng</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Cao, Yang</creatorcontrib><creatorcontrib>Liu, Hong-Fei</creatorcontrib><creatorcontrib>Zhang, Hang</creatorcontrib><creatorcontrib>Guo, Ming-Lei</creatorcontrib><creatorcontrib>Shi, Xiang-Wei</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Chalmers tekniska högskola</collection><jtitle>Research in astronomy and astrophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Jin</au><au>Zhu, Kai</au><au>Gan, Heng-Qian</au><au>Jiang, Peng</au><au>Yang, Jian</au><au>Cao, Yang</au><au>Liu, Hong-Fei</au><au>Zhang, Hang</au><au>Guo, Ming-Lei</au><au>Shi, Xiang-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of wideband orthomode transducers for FAST cryogenic receiver system</atitle><jtitle>Research in astronomy and astrophysics</jtitle><addtitle>Res. Astron. Astrophys</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>20</volume><issue>5</issue><spage>71</spage><pages>71-</pages><issn>1674-4527</issn><abstract>This paper describes the design, construction, and performance of the wideband orthomode transducers (OMTs) for the L- (1.2-1.8 GHz), the S- (2-3 GHz) and the P- (0.56-1.12 GHz) band receiver systems of the Five-hundred-meter Aperture Spherical radio Telescope (FAST). These OMTs operate at the cryogenic temperature of 70K to reduce their thermal noise contribution to the receiver chains. The development on the FAST L- and S-band quad-ridged waveguide (QRWG) OMTs is carried out based on the theoretical mode analysis. In view of the miniaturization of FAST cryogenic receiver system at P-band, a novel wideband compact bowtie dipole OMT is designed with an octave bandwidth as well as a length of only quarter wavelength. The proposed L-, S- and P-band OMTs are designed and optimized by using Ansys High Frequency Structure Simulator (HFSS), and then manufactured, tested at room temperature. Measurement of FAST cryogenic receiver system noise is also performed with the L-, S- and P-band OMTs installed. The measured results fully comply with the design specifications.</abstract><cop>Beijing</cop><pub>National Astronomical Observatories, CAS and IOP Publishing Ltd</pub><doi>10.1088/1674-4527/20/5/71</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1674-4527
ispartof Research in astronomy and astrophysics, 2020-05, Vol.20 (5), p.71
issn 1674-4527
language eng
recordid cdi_proquest_journals_2406658930
source IOP Publishing Journals; Alma/SFX Local Collection
subjects Apertures
Bandwidths
Broadband
CAD
Computer aided design
Cryogenic engineering
Cryogenic temperature
Design specifications
Dipoles
FAST
instruments
Miniaturization
Noise reduction
Radio telescopes
Room temperature
Superhigh frequencies
telescopes
Thermal noise
Transducers
Waveguides
title Development of wideband orthomode transducers for FAST cryogenic receiver system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A53%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20wideband%20orthomode%20transducers%20for%20FAST%20cryogenic%20receiver%20system&rft.jtitle=Research%20in%20astronomy%20and%20astrophysics&rft.au=Fan,%20Jin&rft.date=2020-05-01&rft.volume=20&rft.issue=5&rft.spage=71&rft.pages=71-&rft.issn=1674-4527&rft_id=info:doi/10.1088/1674-4527/20/5/71&rft_dat=%3Cproquest_iop_j%3E2406658930%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406658930&rft_id=info:pmid/&rfr_iscdi=true