Enhanced ferroelectric photovoltaic effect in semiconducting single-wall carbon nanotube/BiFeO3 heterostructures enabled by wide-range light absorption and efficient charge separation

The interfacial electronic band structures of photovoltaic heterostructure devices greatly affect their light absorption and charge-transport properties and thus their photovoltaic performance. In this work, we report an enhanced ferroelectric photovoltaic effect in a semiconducting single-walled ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-05, Vol.8 (20), p.10377-10385
Hauptverfasser: Lee, Hojin, Hyo-Sun, Kim, Oh Yeong Gong, Jun Young Kim, Jin Hong Kim, Choi, Jin Sik, Jung, Hyun Suk, Jun-Young, Park, Kim, Dong Hoe, Young-Soo, Seo, Choi, Taekjib
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10385
container_issue 20
container_start_page 10377
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 8
creator Lee, Hojin
Hyo-Sun, Kim
Oh Yeong Gong
Jun Young Kim
Jin Hong Kim
Choi, Jin Sik
Jung, Hyun Suk
Jun-Young, Park
Kim, Dong Hoe
Young-Soo, Seo
Choi, Taekjib
description The interfacial electronic band structures of photovoltaic heterostructure devices greatly affect their light absorption and charge-transport properties and thus their photovoltaic performance. In this work, we report an enhanced ferroelectric photovoltaic effect in a semiconducting single-walled carbon nanotube (S-SWCNTs)/ferroelectric BiFeO3 (BFO) heterostructure. A wide range of light absorption was possible in this structure owing to the low bandgaps of the S-SWCNTs (0.2–2.1 eV) and BFO (2.2–2.7 eV). The heterostructure also enabled efficient charge separation owing to the strong built-in electric field resulting from the synergic effect of the formation of p–f–n junctions (p-type S-SWCNTs/ferroelectric (f) BFO/n-type Nb:SrTiO3) and the introduction of a polarization-mediated internal field in the ferroelectric BFO layer. Compared with a single-layer device (Pt/BFO/Nb:SrTiO3), the heterostructure device (Pt/S-SWCNTs/BFO/Nb:SrTiO3) exhibited substantial enhancement of the photovoltaic performance. The open-circuit photovoltage and short-circuit photocurrent density reached up to 0.23 V and −7.52 mA cm−2 (corresponding to a photo-conversion efficiency of 4.40%) under one-sun illumination, respectively, after optimization of the ferroelectric layer thickness and appropriate interfacial band alignment. Moreover, by applying switchable electric polarization, this heterostructure could be tuned, enabling the development of controllable photovoltaic devices. Our findings demonstrate that the synergistic integration of materials with different functionalities is a promising approach for the design of photovoltaic devices with tunable performance.
doi_str_mv 10.1039/d0ta00116c
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2406653325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406653325</sourcerecordid><originalsourceid>FETCH-LOGICAL-g220t-c55cda7c898287bc7dda3846d7949af30b42aaa16c167335a6b5cb1e43645a0d3</originalsourceid><addsrcrecordid>eNo9kN1KwzAUx4soOOZufIKA13Vp06TtpY5NhcFu9HqcJKdtRk1mkjp8Ml_PDMVzcb7P_wcny24Lel9Q1i41jUBpUQh1kc1KymleV624_M-b5jpbhHCgyRpKRdvOsu-1HcAq1KRD7x2OqKI3ihwHF92nGyOkArsutYmxJOC7Uc7qSUVjexKSGzE_wTgSBV46SyxYFyeJy0ezwR0jA0b0LkSfTiaPgaAFOSae_CInozH3YHsko-mHSEAG54_RJB2w-sw1yqCNRA3g01bAI3g4z2-yqw7GgIu_OM_eNuvX1XO-3T29rB62eV-WNOaKc6WhVk3blE0tVa01sKYSum6rFjpGZVUCQHpZIWrGOAjJlSywYqLiQDWbZ3e_ukfvPiYMcX9wk7cJuS8rKgRnrOTsB0k2eT0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406653325</pqid></control><display><type>article</type><title>Enhanced ferroelectric photovoltaic effect in semiconducting single-wall carbon nanotube/BiFeO3 heterostructures enabled by wide-range light absorption and efficient charge separation</title><source>Royal Society Of Chemistry Journals</source><creator>Lee, Hojin ; Hyo-Sun, Kim ; Oh Yeong Gong ; Jun Young Kim ; Jin Hong Kim ; Choi, Jin Sik ; Jung, Hyun Suk ; Jun-Young, Park ; Kim, Dong Hoe ; Young-Soo, Seo ; Choi, Taekjib</creator><creatorcontrib>Lee, Hojin ; Hyo-Sun, Kim ; Oh Yeong Gong ; Jun Young Kim ; Jin Hong Kim ; Choi, Jin Sik ; Jung, Hyun Suk ; Jun-Young, Park ; Kim, Dong Hoe ; Young-Soo, Seo ; Choi, Taekjib</creatorcontrib><description>The interfacial electronic band structures of photovoltaic heterostructure devices greatly affect their light absorption and charge-transport properties and thus their photovoltaic performance. In this work, we report an enhanced ferroelectric photovoltaic effect in a semiconducting single-walled carbon nanotube (S-SWCNTs)/ferroelectric BiFeO3 (BFO) heterostructure. A wide range of light absorption was possible in this structure owing to the low bandgaps of the S-SWCNTs (0.2–2.1 eV) and BFO (2.2–2.7 eV). The heterostructure also enabled efficient charge separation owing to the strong built-in electric field resulting from the synergic effect of the formation of p–f–n junctions (p-type S-SWCNTs/ferroelectric (f) BFO/n-type Nb:SrTiO3) and the introduction of a polarization-mediated internal field in the ferroelectric BFO layer. Compared with a single-layer device (Pt/BFO/Nb:SrTiO3), the heterostructure device (Pt/S-SWCNTs/BFO/Nb:SrTiO3) exhibited substantial enhancement of the photovoltaic performance. The open-circuit photovoltage and short-circuit photocurrent density reached up to 0.23 V and −7.52 mA cm−2 (corresponding to a photo-conversion efficiency of 4.40%) under one-sun illumination, respectively, after optimization of the ferroelectric layer thickness and appropriate interfacial band alignment. Moreover, by applying switchable electric polarization, this heterostructure could be tuned, enabling the development of controllable photovoltaic devices. Our findings demonstrate that the synergistic integration of materials with different functionalities is a promising approach for the design of photovoltaic devices with tunable performance.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta00116c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption ; Bismuth ferrite ; Charge transport ; Electric fields ; Electric polarization ; Electrical junctions ; Electromagnetic absorption ; Ferroelectric materials ; Ferroelectricity ; Heterostructures ; Optimization ; Photoelectric effect ; Photoelectric emission ; Photovoltaic cells ; Photovoltaic effect ; Photovoltaics ; Polarization ; Separation ; Short circuits ; Single wall carbon nanotubes ; Strontium titanates ; Thickness ; Transport properties</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-05, Vol.8 (20), p.10377-10385</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Hojin</creatorcontrib><creatorcontrib>Hyo-Sun, Kim</creatorcontrib><creatorcontrib>Oh Yeong Gong</creatorcontrib><creatorcontrib>Jun Young Kim</creatorcontrib><creatorcontrib>Jin Hong Kim</creatorcontrib><creatorcontrib>Choi, Jin Sik</creatorcontrib><creatorcontrib>Jung, Hyun Suk</creatorcontrib><creatorcontrib>Jun-Young, Park</creatorcontrib><creatorcontrib>Kim, Dong Hoe</creatorcontrib><creatorcontrib>Young-Soo, Seo</creatorcontrib><creatorcontrib>Choi, Taekjib</creatorcontrib><title>Enhanced ferroelectric photovoltaic effect in semiconducting single-wall carbon nanotube/BiFeO3 heterostructures enabled by wide-range light absorption and efficient charge separation</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The interfacial electronic band structures of photovoltaic heterostructure devices greatly affect their light absorption and charge-transport properties and thus their photovoltaic performance. In this work, we report an enhanced ferroelectric photovoltaic effect in a semiconducting single-walled carbon nanotube (S-SWCNTs)/ferroelectric BiFeO3 (BFO) heterostructure. A wide range of light absorption was possible in this structure owing to the low bandgaps of the S-SWCNTs (0.2–2.1 eV) and BFO (2.2–2.7 eV). The heterostructure also enabled efficient charge separation owing to the strong built-in electric field resulting from the synergic effect of the formation of p–f–n junctions (p-type S-SWCNTs/ferroelectric (f) BFO/n-type Nb:SrTiO3) and the introduction of a polarization-mediated internal field in the ferroelectric BFO layer. Compared with a single-layer device (Pt/BFO/Nb:SrTiO3), the heterostructure device (Pt/S-SWCNTs/BFO/Nb:SrTiO3) exhibited substantial enhancement of the photovoltaic performance. The open-circuit photovoltage and short-circuit photocurrent density reached up to 0.23 V and −7.52 mA cm−2 (corresponding to a photo-conversion efficiency of 4.40%) under one-sun illumination, respectively, after optimization of the ferroelectric layer thickness and appropriate interfacial band alignment. Moreover, by applying switchable electric polarization, this heterostructure could be tuned, enabling the development of controllable photovoltaic devices. Our findings demonstrate that the synergistic integration of materials with different functionalities is a promising approach for the design of photovoltaic devices with tunable performance.</description><subject>Absorption</subject><subject>Bismuth ferrite</subject><subject>Charge transport</subject><subject>Electric fields</subject><subject>Electric polarization</subject><subject>Electrical junctions</subject><subject>Electromagnetic absorption</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Heterostructures</subject><subject>Optimization</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic effect</subject><subject>Photovoltaics</subject><subject>Polarization</subject><subject>Separation</subject><subject>Short circuits</subject><subject>Single wall carbon nanotubes</subject><subject>Strontium titanates</subject><subject>Thickness</subject><subject>Transport properties</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kN1KwzAUx4soOOZufIKA13Vp06TtpY5NhcFu9HqcJKdtRk1mkjp8Ml_PDMVzcb7P_wcny24Lel9Q1i41jUBpUQh1kc1KymleV624_M-b5jpbhHCgyRpKRdvOsu-1HcAq1KRD7x2OqKI3ihwHF92nGyOkArsutYmxJOC7Uc7qSUVjexKSGzE_wTgSBV46SyxYFyeJy0ezwR0jA0b0LkSfTiaPgaAFOSae_CInozH3YHsko-mHSEAG54_RJB2w-sw1yqCNRA3g01bAI3g4z2-yqw7GgIu_OM_eNuvX1XO-3T29rB62eV-WNOaKc6WhVk3blE0tVa01sKYSum6rFjpGZVUCQHpZIWrGOAjJlSywYqLiQDWbZ3e_ukfvPiYMcX9wk7cJuS8rKgRnrOTsB0k2eT0</recordid><startdate>20200528</startdate><enddate>20200528</enddate><creator>Lee, Hojin</creator><creator>Hyo-Sun, Kim</creator><creator>Oh Yeong Gong</creator><creator>Jun Young Kim</creator><creator>Jin Hong Kim</creator><creator>Choi, Jin Sik</creator><creator>Jung, Hyun Suk</creator><creator>Jun-Young, Park</creator><creator>Kim, Dong Hoe</creator><creator>Young-Soo, Seo</creator><creator>Choi, Taekjib</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200528</creationdate><title>Enhanced ferroelectric photovoltaic effect in semiconducting single-wall carbon nanotube/BiFeO3 heterostructures enabled by wide-range light absorption and efficient charge separation</title><author>Lee, Hojin ; Hyo-Sun, Kim ; Oh Yeong Gong ; Jun Young Kim ; Jin Hong Kim ; Choi, Jin Sik ; Jung, Hyun Suk ; Jun-Young, Park ; Kim, Dong Hoe ; Young-Soo, Seo ; Choi, Taekjib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g220t-c55cda7c898287bc7dda3846d7949af30b42aaa16c167335a6b5cb1e43645a0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>Bismuth ferrite</topic><topic>Charge transport</topic><topic>Electric fields</topic><topic>Electric polarization</topic><topic>Electrical junctions</topic><topic>Electromagnetic absorption</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Heterostructures</topic><topic>Optimization</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic effect</topic><topic>Photovoltaics</topic><topic>Polarization</topic><topic>Separation</topic><topic>Short circuits</topic><topic>Single wall carbon nanotubes</topic><topic>Strontium titanates</topic><topic>Thickness</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hojin</creatorcontrib><creatorcontrib>Hyo-Sun, Kim</creatorcontrib><creatorcontrib>Oh Yeong Gong</creatorcontrib><creatorcontrib>Jun Young Kim</creatorcontrib><creatorcontrib>Jin Hong Kim</creatorcontrib><creatorcontrib>Choi, Jin Sik</creatorcontrib><creatorcontrib>Jung, Hyun Suk</creatorcontrib><creatorcontrib>Jun-Young, Park</creatorcontrib><creatorcontrib>Kim, Dong Hoe</creatorcontrib><creatorcontrib>Young-Soo, Seo</creatorcontrib><creatorcontrib>Choi, Taekjib</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hojin</au><au>Hyo-Sun, Kim</au><au>Oh Yeong Gong</au><au>Jun Young Kim</au><au>Jin Hong Kim</au><au>Choi, Jin Sik</au><au>Jung, Hyun Suk</au><au>Jun-Young, Park</au><au>Kim, Dong Hoe</au><au>Young-Soo, Seo</au><au>Choi, Taekjib</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced ferroelectric photovoltaic effect in semiconducting single-wall carbon nanotube/BiFeO3 heterostructures enabled by wide-range light absorption and efficient charge separation</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-05-28</date><risdate>2020</risdate><volume>8</volume><issue>20</issue><spage>10377</spage><epage>10385</epage><pages>10377-10385</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The interfacial electronic band structures of photovoltaic heterostructure devices greatly affect their light absorption and charge-transport properties and thus their photovoltaic performance. In this work, we report an enhanced ferroelectric photovoltaic effect in a semiconducting single-walled carbon nanotube (S-SWCNTs)/ferroelectric BiFeO3 (BFO) heterostructure. A wide range of light absorption was possible in this structure owing to the low bandgaps of the S-SWCNTs (0.2–2.1 eV) and BFO (2.2–2.7 eV). The heterostructure also enabled efficient charge separation owing to the strong built-in electric field resulting from the synergic effect of the formation of p–f–n junctions (p-type S-SWCNTs/ferroelectric (f) BFO/n-type Nb:SrTiO3) and the introduction of a polarization-mediated internal field in the ferroelectric BFO layer. Compared with a single-layer device (Pt/BFO/Nb:SrTiO3), the heterostructure device (Pt/S-SWCNTs/BFO/Nb:SrTiO3) exhibited substantial enhancement of the photovoltaic performance. The open-circuit photovoltage and short-circuit photocurrent density reached up to 0.23 V and −7.52 mA cm−2 (corresponding to a photo-conversion efficiency of 4.40%) under one-sun illumination, respectively, after optimization of the ferroelectric layer thickness and appropriate interfacial band alignment. Moreover, by applying switchable electric polarization, this heterostructure could be tuned, enabling the development of controllable photovoltaic devices. Our findings demonstrate that the synergistic integration of materials with different functionalities is a promising approach for the design of photovoltaic devices with tunable performance.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta00116c</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2020-05, Vol.8 (20), p.10377-10385
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2406653325
source Royal Society Of Chemistry Journals
subjects Absorption
Bismuth ferrite
Charge transport
Electric fields
Electric polarization
Electrical junctions
Electromagnetic absorption
Ferroelectric materials
Ferroelectricity
Heterostructures
Optimization
Photoelectric effect
Photoelectric emission
Photovoltaic cells
Photovoltaic effect
Photovoltaics
Polarization
Separation
Short circuits
Single wall carbon nanotubes
Strontium titanates
Thickness
Transport properties
title Enhanced ferroelectric photovoltaic effect in semiconducting single-wall carbon nanotube/BiFeO3 heterostructures enabled by wide-range light absorption and efficient charge separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20ferroelectric%20photovoltaic%20effect%20in%20semiconducting%20single-wall%20carbon%20nanotube/BiFeO3%20heterostructures%20enabled%20by%20wide-range%20light%20absorption%20and%20efficient%20charge%20separation&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Lee,%20Hojin&rft.date=2020-05-28&rft.volume=8&rft.issue=20&rft.spage=10377&rft.epage=10385&rft.pages=10377-10385&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta00116c&rft_dat=%3Cproquest%3E2406653325%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406653325&rft_id=info:pmid/&rfr_iscdi=true