Molecular‐Level Design of Pyrrhotite Electrocatalyst Decorated Hierarchical Porous Carbon Spheres as Nanoreactors for Lithium–Sulfur Batteries
Lithium–sulfur batteries (LSBs) are a class of new‐generation rechargeable high‐energy‐density batteries. However, the persisting issue of lithium polysulfides (LiPs) dissolution and the shuttling effect that impedes the efficiency of LSBs are challenging to resolve. Herein a general synthesis of hi...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2020-05, Vol.10 (20), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 20 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 10 |
creator | Boyjoo, Yash Shi, Haodong Olsson, Emilia Cai, Qiong Wu, Zhong‐Shuai Liu, Jian Lu, Gao Qing (Max) |
description | Lithium–sulfur batteries (LSBs) are a class of new‐generation rechargeable high‐energy‐density batteries. However, the persisting issue of lithium polysulfides (LiPs) dissolution and the shuttling effect that impedes the efficiency of LSBs are challenging to resolve. Herein a general synthesis of highly dispersed pyrrhotite Fe1−xS nanoparticles embedded in hierarchically porous nitrogen‐doped carbon spheres (Fe1−xS‐NC) is proposed. Fe1−xS‐NC has a high specific surface area (627 m2 g−1), large pore volume (0.41 cm3 g−1), and enhanced adsorption and electrocatalytic transition toward LiPs. Furthermore, in situ generated large mesoporous pores within carbon spheres can accommodate high sulfur loading of up to 75%, and sustain volume variations during charge/discharge cycles as well as improve ionic/mass transfer. The exceptional adsorption properties of Fe1−xS‐NC for LiPs are predicted theoretically and confirmed experimentally. Subsequently, the electrocatalytic activity of Fe1−xS‐NC is thoroughly verified. The results confirm Fe1−xS‐NC is a highly efficient nanoreactor for sulfur loading. Consequently, the Fe1−xS‐NC nanoreactor performs extremely well as a cathodic material for LSBs, exhibiting a high initial capacity of 1070 mAh g−1 with nearly no capacity loss after 200 cycles at 0.5 C. Furthermore, the resulting LSBs display remarkably enhanced rate capability and cyclability even at a high sulfur loading of 8.14 mg cm−2.
Hierarchically porous N‐doped carbon spheres embedded with highly active and dispersed Fe1−xS pyrrhotite nanoparticles act as efficient adsorption and conversion nanoreactors of lithium polysulfides for use as high‐sulfur‐loading cathode material in lithium–sulfur batteries, exhibiting high capacity and exceptional long‐term cyclability. |
doi_str_mv | 10.1002/aenm.202000651 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2406438960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406438960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4601-5bf5cf14d9853f931adb1b0b2f17c38e79566a048ab38563af0477a6de5a0f473</originalsourceid><addsrcrecordid>eNqFkMFO20AQQK2qSEWUa88rcU46612v7SMNASoFigScrfFmtlnkeNPZNSi3fELV_iFfUqMgeuQ0c3hvRnpZ9kXCVALkX5H69TSHHABMIT9kh9JIPTGVho9vu8o_ZccxPowM6FqCUofZn6vQkR065Ofd7wU9UifOKPqfvQhO3GyZVyH5RGI-UomDxYTdNqYRsoEx0VJcemJku_IWO3ETOAxRzJDb0IvbzYqYosAorrEPTGhT4ChcYLHwaeWH9fPu7-3QuYHFN0yJ2FP8nB047CIdv86j7P58fje7nCx-XHyfnS4mVhuQk6J1hXVSL-uqUK5WEpetbKHNnSytqqisC2MQdIWtqgqj0IEuSzRLKhCcLtVRdrK_u-Hwa6CYmocwcD--bHINRquqNjBS0z1lOcTI5JoN-zXytpHQvKRvXtI3b-lHod4LT76j7Tt0czq_vvrv_gPy74x-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406438960</pqid></control><display><type>article</type><title>Molecular‐Level Design of Pyrrhotite Electrocatalyst Decorated Hierarchical Porous Carbon Spheres as Nanoreactors for Lithium–Sulfur Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Boyjoo, Yash ; Shi, Haodong ; Olsson, Emilia ; Cai, Qiong ; Wu, Zhong‐Shuai ; Liu, Jian ; Lu, Gao Qing (Max)</creator><creatorcontrib>Boyjoo, Yash ; Shi, Haodong ; Olsson, Emilia ; Cai, Qiong ; Wu, Zhong‐Shuai ; Liu, Jian ; Lu, Gao Qing (Max)</creatorcontrib><description>Lithium–sulfur batteries (LSBs) are a class of new‐generation rechargeable high‐energy‐density batteries. However, the persisting issue of lithium polysulfides (LiPs) dissolution and the shuttling effect that impedes the efficiency of LSBs are challenging to resolve. Herein a general synthesis of highly dispersed pyrrhotite Fe1−xS nanoparticles embedded in hierarchically porous nitrogen‐doped carbon spheres (Fe1−xS‐NC) is proposed. Fe1−xS‐NC has a high specific surface area (627 m2 g−1), large pore volume (0.41 cm3 g−1), and enhanced adsorption and electrocatalytic transition toward LiPs. Furthermore, in situ generated large mesoporous pores within carbon spheres can accommodate high sulfur loading of up to 75%, and sustain volume variations during charge/discharge cycles as well as improve ionic/mass transfer. The exceptional adsorption properties of Fe1−xS‐NC for LiPs are predicted theoretically and confirmed experimentally. Subsequently, the electrocatalytic activity of Fe1−xS‐NC is thoroughly verified. The results confirm Fe1−xS‐NC is a highly efficient nanoreactor for sulfur loading. Consequently, the Fe1−xS‐NC nanoreactor performs extremely well as a cathodic material for LSBs, exhibiting a high initial capacity of 1070 mAh g−1 with nearly no capacity loss after 200 cycles at 0.5 C. Furthermore, the resulting LSBs display remarkably enhanced rate capability and cyclability even at a high sulfur loading of 8.14 mg cm−2.
Hierarchically porous N‐doped carbon spheres embedded with highly active and dispersed Fe1−xS pyrrhotite nanoparticles act as efficient adsorption and conversion nanoreactors of lithium polysulfides for use as high‐sulfur‐loading cathode material in lithium–sulfur batteries, exhibiting high capacity and exceptional long‐term cyclability.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202000651</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Carbon ; electrocatalytic effects ; Electrode materials ; Lithium ; Lithium sulfur batteries ; Mass transfer ; metal sulfides ; Nanoparticles ; porous carbon spheres ; Pyrrhotite ; Rechargeable batteries ; Sulfur</subject><ispartof>Advanced energy materials, 2020-05, Vol.10 (20), p.n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4601-5bf5cf14d9853f931adb1b0b2f17c38e79566a048ab38563af0477a6de5a0f473</citedby><cites>FETCH-LOGICAL-c4601-5bf5cf14d9853f931adb1b0b2f17c38e79566a048ab38563af0477a6de5a0f473</cites><orcidid>0000-0002-5114-0404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202000651$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202000651$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Boyjoo, Yash</creatorcontrib><creatorcontrib>Shi, Haodong</creatorcontrib><creatorcontrib>Olsson, Emilia</creatorcontrib><creatorcontrib>Cai, Qiong</creatorcontrib><creatorcontrib>Wu, Zhong‐Shuai</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Lu, Gao Qing (Max)</creatorcontrib><title>Molecular‐Level Design of Pyrrhotite Electrocatalyst Decorated Hierarchical Porous Carbon Spheres as Nanoreactors for Lithium–Sulfur Batteries</title><title>Advanced energy materials</title><description>Lithium–sulfur batteries (LSBs) are a class of new‐generation rechargeable high‐energy‐density batteries. However, the persisting issue of lithium polysulfides (LiPs) dissolution and the shuttling effect that impedes the efficiency of LSBs are challenging to resolve. Herein a general synthesis of highly dispersed pyrrhotite Fe1−xS nanoparticles embedded in hierarchically porous nitrogen‐doped carbon spheres (Fe1−xS‐NC) is proposed. Fe1−xS‐NC has a high specific surface area (627 m2 g−1), large pore volume (0.41 cm3 g−1), and enhanced adsorption and electrocatalytic transition toward LiPs. Furthermore, in situ generated large mesoporous pores within carbon spheres can accommodate high sulfur loading of up to 75%, and sustain volume variations during charge/discharge cycles as well as improve ionic/mass transfer. The exceptional adsorption properties of Fe1−xS‐NC for LiPs are predicted theoretically and confirmed experimentally. Subsequently, the electrocatalytic activity of Fe1−xS‐NC is thoroughly verified. The results confirm Fe1−xS‐NC is a highly efficient nanoreactor for sulfur loading. Consequently, the Fe1−xS‐NC nanoreactor performs extremely well as a cathodic material for LSBs, exhibiting a high initial capacity of 1070 mAh g−1 with nearly no capacity loss after 200 cycles at 0.5 C. Furthermore, the resulting LSBs display remarkably enhanced rate capability and cyclability even at a high sulfur loading of 8.14 mg cm−2.
Hierarchically porous N‐doped carbon spheres embedded with highly active and dispersed Fe1−xS pyrrhotite nanoparticles act as efficient adsorption and conversion nanoreactors of lithium polysulfides for use as high‐sulfur‐loading cathode material in lithium–sulfur batteries, exhibiting high capacity and exceptional long‐term cyclability.</description><subject>Adsorption</subject><subject>Carbon</subject><subject>electrocatalytic effects</subject><subject>Electrode materials</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Mass transfer</subject><subject>metal sulfides</subject><subject>Nanoparticles</subject><subject>porous carbon spheres</subject><subject>Pyrrhotite</subject><subject>Rechargeable batteries</subject><subject>Sulfur</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkMFO20AQQK2qSEWUa88rcU46612v7SMNASoFigScrfFmtlnkeNPZNSi3fELV_iFfUqMgeuQ0c3hvRnpZ9kXCVALkX5H69TSHHABMIT9kh9JIPTGVho9vu8o_ZccxPowM6FqCUofZn6vQkR065Ofd7wU9UifOKPqfvQhO3GyZVyH5RGI-UomDxYTdNqYRsoEx0VJcemJku_IWO3ETOAxRzJDb0IvbzYqYosAorrEPTGhT4ChcYLHwaeWH9fPu7-3QuYHFN0yJ2FP8nB047CIdv86j7P58fje7nCx-XHyfnS4mVhuQk6J1hXVSL-uqUK5WEpetbKHNnSytqqisC2MQdIWtqgqj0IEuSzRLKhCcLtVRdrK_u-Hwa6CYmocwcD--bHINRquqNjBS0z1lOcTI5JoN-zXytpHQvKRvXtI3b-lHod4LT76j7Tt0czq_vvrv_gPy74x-</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Boyjoo, Yash</creator><creator>Shi, Haodong</creator><creator>Olsson, Emilia</creator><creator>Cai, Qiong</creator><creator>Wu, Zhong‐Shuai</creator><creator>Liu, Jian</creator><creator>Lu, Gao Qing (Max)</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5114-0404</orcidid></search><sort><creationdate>20200501</creationdate><title>Molecular‐Level Design of Pyrrhotite Electrocatalyst Decorated Hierarchical Porous Carbon Spheres as Nanoreactors for Lithium–Sulfur Batteries</title><author>Boyjoo, Yash ; Shi, Haodong ; Olsson, Emilia ; Cai, Qiong ; Wu, Zhong‐Shuai ; Liu, Jian ; Lu, Gao Qing (Max)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4601-5bf5cf14d9853f931adb1b0b2f17c38e79566a048ab38563af0477a6de5a0f473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Carbon</topic><topic>electrocatalytic effects</topic><topic>Electrode materials</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Mass transfer</topic><topic>metal sulfides</topic><topic>Nanoparticles</topic><topic>porous carbon spheres</topic><topic>Pyrrhotite</topic><topic>Rechargeable batteries</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyjoo, Yash</creatorcontrib><creatorcontrib>Shi, Haodong</creatorcontrib><creatorcontrib>Olsson, Emilia</creatorcontrib><creatorcontrib>Cai, Qiong</creatorcontrib><creatorcontrib>Wu, Zhong‐Shuai</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Lu, Gao Qing (Max)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boyjoo, Yash</au><au>Shi, Haodong</au><au>Olsson, Emilia</au><au>Cai, Qiong</au><au>Wu, Zhong‐Shuai</au><au>Liu, Jian</au><au>Lu, Gao Qing (Max)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular‐Level Design of Pyrrhotite Electrocatalyst Decorated Hierarchical Porous Carbon Spheres as Nanoreactors for Lithium–Sulfur Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>10</volume><issue>20</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Lithium–sulfur batteries (LSBs) are a class of new‐generation rechargeable high‐energy‐density batteries. However, the persisting issue of lithium polysulfides (LiPs) dissolution and the shuttling effect that impedes the efficiency of LSBs are challenging to resolve. Herein a general synthesis of highly dispersed pyrrhotite Fe1−xS nanoparticles embedded in hierarchically porous nitrogen‐doped carbon spheres (Fe1−xS‐NC) is proposed. Fe1−xS‐NC has a high specific surface area (627 m2 g−1), large pore volume (0.41 cm3 g−1), and enhanced adsorption and electrocatalytic transition toward LiPs. Furthermore, in situ generated large mesoporous pores within carbon spheres can accommodate high sulfur loading of up to 75%, and sustain volume variations during charge/discharge cycles as well as improve ionic/mass transfer. The exceptional adsorption properties of Fe1−xS‐NC for LiPs are predicted theoretically and confirmed experimentally. Subsequently, the electrocatalytic activity of Fe1−xS‐NC is thoroughly verified. The results confirm Fe1−xS‐NC is a highly efficient nanoreactor for sulfur loading. Consequently, the Fe1−xS‐NC nanoreactor performs extremely well as a cathodic material for LSBs, exhibiting a high initial capacity of 1070 mAh g−1 with nearly no capacity loss after 200 cycles at 0.5 C. Furthermore, the resulting LSBs display remarkably enhanced rate capability and cyclability even at a high sulfur loading of 8.14 mg cm−2.
Hierarchically porous N‐doped carbon spheres embedded with highly active and dispersed Fe1−xS pyrrhotite nanoparticles act as efficient adsorption and conversion nanoreactors of lithium polysulfides for use as high‐sulfur‐loading cathode material in lithium–sulfur batteries, exhibiting high capacity and exceptional long‐term cyclability.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202000651</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5114-0404</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2020-05, Vol.10 (20), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2406438960 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Adsorption Carbon electrocatalytic effects Electrode materials Lithium Lithium sulfur batteries Mass transfer metal sulfides Nanoparticles porous carbon spheres Pyrrhotite Rechargeable batteries Sulfur |
title | Molecular‐Level Design of Pyrrhotite Electrocatalyst Decorated Hierarchical Porous Carbon Spheres as Nanoreactors for Lithium–Sulfur Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%E2%80%90Level%20Design%20of%20Pyrrhotite%20Electrocatalyst%20Decorated%20Hierarchical%20Porous%20Carbon%20Spheres%20as%20Nanoreactors%20for%20Lithium%E2%80%93Sulfur%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Boyjoo,%20Yash&rft.date=2020-05-01&rft.volume=10&rft.issue=20&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202000651&rft_dat=%3Cproquest_cross%3E2406438960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406438960&rft_id=info:pmid/&rfr_iscdi=true |