Molecular‐Level Design of Pyrrhotite Electrocatalyst Decorated Hierarchical Porous Carbon Spheres as Nanoreactors for Lithium–Sulfur Batteries

Lithium–sulfur batteries (LSBs) are a class of new‐generation rechargeable high‐energy‐density batteries. However, the persisting issue of lithium polysulfides (LiPs) dissolution and the shuttling effect that impedes the efficiency of LSBs are challenging to resolve. Herein a general synthesis of hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2020-05, Vol.10 (20), p.n/a
Hauptverfasser: Boyjoo, Yash, Shi, Haodong, Olsson, Emilia, Cai, Qiong, Wu, Zhong‐Shuai, Liu, Jian, Lu, Gao Qing (Max)
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 20
container_start_page
container_title Advanced energy materials
container_volume 10
creator Boyjoo, Yash
Shi, Haodong
Olsson, Emilia
Cai, Qiong
Wu, Zhong‐Shuai
Liu, Jian
Lu, Gao Qing (Max)
description Lithium–sulfur batteries (LSBs) are a class of new‐generation rechargeable high‐energy‐density batteries. However, the persisting issue of lithium polysulfides (LiPs) dissolution and the shuttling effect that impedes the efficiency of LSBs are challenging to resolve. Herein a general synthesis of highly dispersed pyrrhotite Fe1−xS nanoparticles embedded in hierarchically porous nitrogen‐doped carbon spheres (Fe1−xS‐NC) is proposed. Fe1−xS‐NC has a high specific surface area (627 m2 g−1), large pore volume (0.41 cm3 g−1), and enhanced adsorption and electrocatalytic transition toward LiPs. Furthermore, in situ generated large mesoporous pores within carbon spheres can accommodate high sulfur loading of up to 75%, and sustain volume variations during charge/discharge cycles as well as improve ionic/mass transfer. The exceptional adsorption properties of Fe1−xS‐NC for LiPs are predicted theoretically and confirmed experimentally. Subsequently, the electrocatalytic activity of Fe1−xS‐NC is thoroughly verified. The results confirm Fe1−xS‐NC is a highly efficient nanoreactor for sulfur loading. Consequently, the Fe1−xS‐NC nanoreactor performs extremely well as a cathodic material for LSBs, exhibiting a high initial capacity of 1070 mAh g−1 with nearly no capacity loss after 200 cycles at 0.5 C. Furthermore, the resulting LSBs display remarkably enhanced rate capability and cyclability even at a high sulfur loading of 8.14 mg cm−2. Hierarchically porous N‐doped carbon spheres embedded with highly active and dispersed Fe1−xS pyrrhotite nanoparticles act as efficient adsorption and conversion nanoreactors of lithium polysulfides for use as high‐sulfur‐loading cathode material in lithium–sulfur batteries, exhibiting high capacity and exceptional long‐term cyclability.
doi_str_mv 10.1002/aenm.202000651
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2406438960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406438960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4601-5bf5cf14d9853f931adb1b0b2f17c38e79566a048ab38563af0477a6de5a0f473</originalsourceid><addsrcrecordid>eNqFkMFO20AQQK2qSEWUa88rcU46612v7SMNASoFigScrfFmtlnkeNPZNSi3fELV_iFfUqMgeuQ0c3hvRnpZ9kXCVALkX5H69TSHHABMIT9kh9JIPTGVho9vu8o_ZccxPowM6FqCUofZn6vQkR065Ofd7wU9UifOKPqfvQhO3GyZVyH5RGI-UomDxYTdNqYRsoEx0VJcemJku_IWO3ETOAxRzJDb0IvbzYqYosAorrEPTGhT4ChcYLHwaeWH9fPu7-3QuYHFN0yJ2FP8nB047CIdv86j7P58fje7nCx-XHyfnS4mVhuQk6J1hXVSL-uqUK5WEpetbKHNnSytqqisC2MQdIWtqgqj0IEuSzRLKhCcLtVRdrK_u-Hwa6CYmocwcD--bHINRquqNjBS0z1lOcTI5JoN-zXytpHQvKRvXtI3b-lHod4LT76j7Tt0czq_vvrv_gPy74x-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406438960</pqid></control><display><type>article</type><title>Molecular‐Level Design of Pyrrhotite Electrocatalyst Decorated Hierarchical Porous Carbon Spheres as Nanoreactors for Lithium–Sulfur Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Boyjoo, Yash ; Shi, Haodong ; Olsson, Emilia ; Cai, Qiong ; Wu, Zhong‐Shuai ; Liu, Jian ; Lu, Gao Qing (Max)</creator><creatorcontrib>Boyjoo, Yash ; Shi, Haodong ; Olsson, Emilia ; Cai, Qiong ; Wu, Zhong‐Shuai ; Liu, Jian ; Lu, Gao Qing (Max)</creatorcontrib><description>Lithium–sulfur batteries (LSBs) are a class of new‐generation rechargeable high‐energy‐density batteries. However, the persisting issue of lithium polysulfides (LiPs) dissolution and the shuttling effect that impedes the efficiency of LSBs are challenging to resolve. Herein a general synthesis of highly dispersed pyrrhotite Fe1−xS nanoparticles embedded in hierarchically porous nitrogen‐doped carbon spheres (Fe1−xS‐NC) is proposed. Fe1−xS‐NC has a high specific surface area (627 m2 g−1), large pore volume (0.41 cm3 g−1), and enhanced adsorption and electrocatalytic transition toward LiPs. Furthermore, in situ generated large mesoporous pores within carbon spheres can accommodate high sulfur loading of up to 75%, and sustain volume variations during charge/discharge cycles as well as improve ionic/mass transfer. The exceptional adsorption properties of Fe1−xS‐NC for LiPs are predicted theoretically and confirmed experimentally. Subsequently, the electrocatalytic activity of Fe1−xS‐NC is thoroughly verified. The results confirm Fe1−xS‐NC is a highly efficient nanoreactor for sulfur loading. Consequently, the Fe1−xS‐NC nanoreactor performs extremely well as a cathodic material for LSBs, exhibiting a high initial capacity of 1070 mAh g−1 with nearly no capacity loss after 200 cycles at 0.5 C. Furthermore, the resulting LSBs display remarkably enhanced rate capability and cyclability even at a high sulfur loading of 8.14 mg cm−2. Hierarchically porous N‐doped carbon spheres embedded with highly active and dispersed Fe1−xS pyrrhotite nanoparticles act as efficient adsorption and conversion nanoreactors of lithium polysulfides for use as high‐sulfur‐loading cathode material in lithium–sulfur batteries, exhibiting high capacity and exceptional long‐term cyclability.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202000651</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Carbon ; electrocatalytic effects ; Electrode materials ; Lithium ; Lithium sulfur batteries ; Mass transfer ; metal sulfides ; Nanoparticles ; porous carbon spheres ; Pyrrhotite ; Rechargeable batteries ; Sulfur</subject><ispartof>Advanced energy materials, 2020-05, Vol.10 (20), p.n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4601-5bf5cf14d9853f931adb1b0b2f17c38e79566a048ab38563af0477a6de5a0f473</citedby><cites>FETCH-LOGICAL-c4601-5bf5cf14d9853f931adb1b0b2f17c38e79566a048ab38563af0477a6de5a0f473</cites><orcidid>0000-0002-5114-0404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202000651$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202000651$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Boyjoo, Yash</creatorcontrib><creatorcontrib>Shi, Haodong</creatorcontrib><creatorcontrib>Olsson, Emilia</creatorcontrib><creatorcontrib>Cai, Qiong</creatorcontrib><creatorcontrib>Wu, Zhong‐Shuai</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Lu, Gao Qing (Max)</creatorcontrib><title>Molecular‐Level Design of Pyrrhotite Electrocatalyst Decorated Hierarchical Porous Carbon Spheres as Nanoreactors for Lithium–Sulfur Batteries</title><title>Advanced energy materials</title><description>Lithium–sulfur batteries (LSBs) are a class of new‐generation rechargeable high‐energy‐density batteries. However, the persisting issue of lithium polysulfides (LiPs) dissolution and the shuttling effect that impedes the efficiency of LSBs are challenging to resolve. Herein a general synthesis of highly dispersed pyrrhotite Fe1−xS nanoparticles embedded in hierarchically porous nitrogen‐doped carbon spheres (Fe1−xS‐NC) is proposed. Fe1−xS‐NC has a high specific surface area (627 m2 g−1), large pore volume (0.41 cm3 g−1), and enhanced adsorption and electrocatalytic transition toward LiPs. Furthermore, in situ generated large mesoporous pores within carbon spheres can accommodate high sulfur loading of up to 75%, and sustain volume variations during charge/discharge cycles as well as improve ionic/mass transfer. The exceptional adsorption properties of Fe1−xS‐NC for LiPs are predicted theoretically and confirmed experimentally. Subsequently, the electrocatalytic activity of Fe1−xS‐NC is thoroughly verified. The results confirm Fe1−xS‐NC is a highly efficient nanoreactor for sulfur loading. Consequently, the Fe1−xS‐NC nanoreactor performs extremely well as a cathodic material for LSBs, exhibiting a high initial capacity of 1070 mAh g−1 with nearly no capacity loss after 200 cycles at 0.5 C. Furthermore, the resulting LSBs display remarkably enhanced rate capability and cyclability even at a high sulfur loading of 8.14 mg cm−2. Hierarchically porous N‐doped carbon spheres embedded with highly active and dispersed Fe1−xS pyrrhotite nanoparticles act as efficient adsorption and conversion nanoreactors of lithium polysulfides for use as high‐sulfur‐loading cathode material in lithium–sulfur batteries, exhibiting high capacity and exceptional long‐term cyclability.</description><subject>Adsorption</subject><subject>Carbon</subject><subject>electrocatalytic effects</subject><subject>Electrode materials</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Mass transfer</subject><subject>metal sulfides</subject><subject>Nanoparticles</subject><subject>porous carbon spheres</subject><subject>Pyrrhotite</subject><subject>Rechargeable batteries</subject><subject>Sulfur</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkMFO20AQQK2qSEWUa88rcU46612v7SMNASoFigScrfFmtlnkeNPZNSi3fELV_iFfUqMgeuQ0c3hvRnpZ9kXCVALkX5H69TSHHABMIT9kh9JIPTGVho9vu8o_ZccxPowM6FqCUofZn6vQkR065Ofd7wU9UifOKPqfvQhO3GyZVyH5RGI-UomDxYTdNqYRsoEx0VJcemJku_IWO3ETOAxRzJDb0IvbzYqYosAorrEPTGhT4ChcYLHwaeWH9fPu7-3QuYHFN0yJ2FP8nB047CIdv86j7P58fje7nCx-XHyfnS4mVhuQk6J1hXVSL-uqUK5WEpetbKHNnSytqqisC2MQdIWtqgqj0IEuSzRLKhCcLtVRdrK_u-Hwa6CYmocwcD--bHINRquqNjBS0z1lOcTI5JoN-zXytpHQvKRvXtI3b-lHod4LT76j7Tt0czq_vvrv_gPy74x-</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Boyjoo, Yash</creator><creator>Shi, Haodong</creator><creator>Olsson, Emilia</creator><creator>Cai, Qiong</creator><creator>Wu, Zhong‐Shuai</creator><creator>Liu, Jian</creator><creator>Lu, Gao Qing (Max)</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5114-0404</orcidid></search><sort><creationdate>20200501</creationdate><title>Molecular‐Level Design of Pyrrhotite Electrocatalyst Decorated Hierarchical Porous Carbon Spheres as Nanoreactors for Lithium–Sulfur Batteries</title><author>Boyjoo, Yash ; Shi, Haodong ; Olsson, Emilia ; Cai, Qiong ; Wu, Zhong‐Shuai ; Liu, Jian ; Lu, Gao Qing (Max)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4601-5bf5cf14d9853f931adb1b0b2f17c38e79566a048ab38563af0477a6de5a0f473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Carbon</topic><topic>electrocatalytic effects</topic><topic>Electrode materials</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Mass transfer</topic><topic>metal sulfides</topic><topic>Nanoparticles</topic><topic>porous carbon spheres</topic><topic>Pyrrhotite</topic><topic>Rechargeable batteries</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyjoo, Yash</creatorcontrib><creatorcontrib>Shi, Haodong</creatorcontrib><creatorcontrib>Olsson, Emilia</creatorcontrib><creatorcontrib>Cai, Qiong</creatorcontrib><creatorcontrib>Wu, Zhong‐Shuai</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Lu, Gao Qing (Max)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boyjoo, Yash</au><au>Shi, Haodong</au><au>Olsson, Emilia</au><au>Cai, Qiong</au><au>Wu, Zhong‐Shuai</au><au>Liu, Jian</au><au>Lu, Gao Qing (Max)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular‐Level Design of Pyrrhotite Electrocatalyst Decorated Hierarchical Porous Carbon Spheres as Nanoreactors for Lithium–Sulfur Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>10</volume><issue>20</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Lithium–sulfur batteries (LSBs) are a class of new‐generation rechargeable high‐energy‐density batteries. However, the persisting issue of lithium polysulfides (LiPs) dissolution and the shuttling effect that impedes the efficiency of LSBs are challenging to resolve. Herein a general synthesis of highly dispersed pyrrhotite Fe1−xS nanoparticles embedded in hierarchically porous nitrogen‐doped carbon spheres (Fe1−xS‐NC) is proposed. Fe1−xS‐NC has a high specific surface area (627 m2 g−1), large pore volume (0.41 cm3 g−1), and enhanced adsorption and electrocatalytic transition toward LiPs. Furthermore, in situ generated large mesoporous pores within carbon spheres can accommodate high sulfur loading of up to 75%, and sustain volume variations during charge/discharge cycles as well as improve ionic/mass transfer. The exceptional adsorption properties of Fe1−xS‐NC for LiPs are predicted theoretically and confirmed experimentally. Subsequently, the electrocatalytic activity of Fe1−xS‐NC is thoroughly verified. The results confirm Fe1−xS‐NC is a highly efficient nanoreactor for sulfur loading. Consequently, the Fe1−xS‐NC nanoreactor performs extremely well as a cathodic material for LSBs, exhibiting a high initial capacity of 1070 mAh g−1 with nearly no capacity loss after 200 cycles at 0.5 C. Furthermore, the resulting LSBs display remarkably enhanced rate capability and cyclability even at a high sulfur loading of 8.14 mg cm−2. Hierarchically porous N‐doped carbon spheres embedded with highly active and dispersed Fe1−xS pyrrhotite nanoparticles act as efficient adsorption and conversion nanoreactors of lithium polysulfides for use as high‐sulfur‐loading cathode material in lithium–sulfur batteries, exhibiting high capacity and exceptional long‐term cyclability.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202000651</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5114-0404</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2020-05, Vol.10 (20), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2406438960
source Wiley Online Library Journals Frontfile Complete
subjects Adsorption
Carbon
electrocatalytic effects
Electrode materials
Lithium
Lithium sulfur batteries
Mass transfer
metal sulfides
Nanoparticles
porous carbon spheres
Pyrrhotite
Rechargeable batteries
Sulfur
title Molecular‐Level Design of Pyrrhotite Electrocatalyst Decorated Hierarchical Porous Carbon Spheres as Nanoreactors for Lithium–Sulfur Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%E2%80%90Level%20Design%20of%20Pyrrhotite%20Electrocatalyst%20Decorated%20Hierarchical%20Porous%20Carbon%20Spheres%20as%20Nanoreactors%20for%20Lithium%E2%80%93Sulfur%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Boyjoo,%20Yash&rft.date=2020-05-01&rft.volume=10&rft.issue=20&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202000651&rft_dat=%3Cproquest_cross%3E2406438960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406438960&rft_id=info:pmid/&rfr_iscdi=true