A Berry–Esseen Bound in the Smoluchowski–Kramers Approximation
In this paper, we use the Kolmogorov distance to investigate the Smoluchowski–Kramers approximation for stochastic differential equations. We obtain an explicit Berry–Esseen error bound for the rate of convergence. Our main tools are the techniques of Malliavin calculus.
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2020-05, Vol.179 (4), p.871-884 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 884 |
---|---|
container_issue | 4 |
container_start_page | 871 |
container_title | Journal of statistical physics |
container_volume | 179 |
creator | Van Tan, Nguyen Dung, Nguyen Tien |
description | In this paper, we use the Kolmogorov distance to investigate the Smoluchowski–Kramers approximation for stochastic differential equations. We obtain an explicit Berry–Esseen error bound for the rate of convergence. Our main tools are the techniques of Malliavin calculus. |
doi_str_mv | 10.1007/s10955-020-02564-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2406317393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A624850308</galeid><sourcerecordid>A624850308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-98b7e86966b4cf9aa96c6dddba2b17e437566dc3ae2bb291e4d765c366105fc03</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAVaRWKeM7diOl2lVHqISC2BtOY7TprRxsRNBd9yBG3ISDEFih0ajkUb_N48foXMMEwwgLgMGyVgKBGIynqX8AI0wEySVHNNDNAIgJM0EZsfoJIQ1AMhcshGaFsnUer__fP-Yh2Btm0xd31ZJ0ybdyiYPW7fpzcq9hucmSu683lofkmK38-6t2equce0pOqr1Jtiz3zpGT1fzx9lNuri_vp0Vi9RQlnepzEthcy45LzNTS60lN7yqqlKTEgubUcE4rwzVlpQlkdhmleDMUM4xsNoAHaOLYW7c_dLb0Km1630bVyqSAadYUEmjajKolnpjVdPWrvPaxKjstjGutXUT-wUnWc6AQh4BMgDGuxC8rdXOx8_8XmFQ3-aqwVwVzVU_5ioeITpAIYrbpfV_t_xDfQFezH3M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406317393</pqid></control><display><type>article</type><title>A Berry–Esseen Bound in the Smoluchowski–Kramers Approximation</title><source>SpringerLink Journals</source><creator>Van Tan, Nguyen ; Dung, Nguyen Tien</creator><creatorcontrib>Van Tan, Nguyen ; Dung, Nguyen Tien</creatorcontrib><description>In this paper, we use the Kolmogorov distance to investigate the Smoluchowski–Kramers approximation for stochastic differential equations. We obtain an explicit Berry–Esseen error bound for the rate of convergence. Our main tools are the techniques of Malliavin calculus.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-020-02564-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Differential equations ; Mathematical analysis ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2020-05, Vol.179 (4), p.871-884</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-98b7e86966b4cf9aa96c6dddba2b17e437566dc3ae2bb291e4d765c366105fc03</citedby><cites>FETCH-LOGICAL-c358t-98b7e86966b4cf9aa96c6dddba2b17e437566dc3ae2bb291e4d765c366105fc03</cites><orcidid>0000-0001-8319-8056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-020-02564-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-020-02564-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Van Tan, Nguyen</creatorcontrib><creatorcontrib>Dung, Nguyen Tien</creatorcontrib><title>A Berry–Esseen Bound in the Smoluchowski–Kramers Approximation</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>In this paper, we use the Kolmogorov distance to investigate the Smoluchowski–Kramers approximation for stochastic differential equations. We obtain an explicit Berry–Esseen error bound for the rate of convergence. Our main tools are the techniques of Malliavin calculus.</description><subject>Approximation</subject><subject>Differential equations</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqVwAVaRWKeM7diOl2lVHqISC2BtOY7TprRxsRNBd9yBG3ISDEFih0ajkUb_N48foXMMEwwgLgMGyVgKBGIynqX8AI0wEySVHNNDNAIgJM0EZsfoJIQ1AMhcshGaFsnUer__fP-Yh2Btm0xd31ZJ0ybdyiYPW7fpzcq9hucmSu683lofkmK38-6t2equce0pOqr1Jtiz3zpGT1fzx9lNuri_vp0Vi9RQlnepzEthcy45LzNTS60lN7yqqlKTEgubUcE4rwzVlpQlkdhmleDMUM4xsNoAHaOLYW7c_dLb0Km1630bVyqSAadYUEmjajKolnpjVdPWrvPaxKjstjGutXUT-wUnWc6AQh4BMgDGuxC8rdXOx8_8XmFQ3-aqwVwVzVU_5ioeITpAIYrbpfV_t_xDfQFezH3M</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Van Tan, Nguyen</creator><creator>Dung, Nguyen Tien</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8319-8056</orcidid></search><sort><creationdate>20200501</creationdate><title>A Berry–Esseen Bound in the Smoluchowski–Kramers Approximation</title><author>Van Tan, Nguyen ; Dung, Nguyen Tien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-98b7e86966b4cf9aa96c6dddba2b17e437566dc3ae2bb291e4d765c366105fc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Differential equations</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Tan, Nguyen</creatorcontrib><creatorcontrib>Dung, Nguyen Tien</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Tan, Nguyen</au><au>Dung, Nguyen Tien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Berry–Esseen Bound in the Smoluchowski–Kramers Approximation</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>179</volume><issue>4</issue><spage>871</spage><epage>884</epage><pages>871-884</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>In this paper, we use the Kolmogorov distance to investigate the Smoluchowski–Kramers approximation for stochastic differential equations. We obtain an explicit Berry–Esseen error bound for the rate of convergence. Our main tools are the techniques of Malliavin calculus.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-020-02564-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8319-8056</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | Journal of statistical physics, 2020-05, Vol.179 (4), p.871-884 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_proquest_journals_2406317393 |
source | SpringerLink Journals |
subjects | Approximation Differential equations Mathematical analysis Mathematical and Computational Physics Physical Chemistry Physics Physics and Astronomy Quantum Physics Statistical Physics and Dynamical Systems Theoretical |
title | A Berry–Esseen Bound in the Smoluchowski–Kramers Approximation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Berry%E2%80%93Esseen%20Bound%20in%20the%20Smoluchowski%E2%80%93Kramers%20Approximation&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Van%20Tan,%20Nguyen&rft.date=2020-05-01&rft.volume=179&rft.issue=4&rft.spage=871&rft.epage=884&rft.pages=871-884&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-020-02564-6&rft_dat=%3Cgale_proqu%3EA624850308%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406317393&rft_id=info:pmid/&rft_galeid=A624850308&rfr_iscdi=true |