A Berry–Esseen Bound in the Smoluchowski–Kramers Approximation

In this paper, we use the Kolmogorov distance to investigate the Smoluchowski–Kramers approximation for stochastic differential equations. We obtain an explicit Berry–Esseen error bound for the rate of convergence. Our main tools are the techniques of Malliavin calculus.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2020-05, Vol.179 (4), p.871-884
Hauptverfasser: Van Tan, Nguyen, Dung, Nguyen Tien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 884
container_issue 4
container_start_page 871
container_title Journal of statistical physics
container_volume 179
creator Van Tan, Nguyen
Dung, Nguyen Tien
description In this paper, we use the Kolmogorov distance to investigate the Smoluchowski–Kramers approximation for stochastic differential equations. We obtain an explicit Berry–Esseen error bound for the rate of convergence. Our main tools are the techniques of Malliavin calculus.
doi_str_mv 10.1007/s10955-020-02564-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2406317393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A624850308</galeid><sourcerecordid>A624850308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-98b7e86966b4cf9aa96c6dddba2b17e437566dc3ae2bb291e4d765c366105fc03</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAVaRWKeM7diOl2lVHqISC2BtOY7TprRxsRNBd9yBG3ISDEFih0ajkUb_N48foXMMEwwgLgMGyVgKBGIynqX8AI0wEySVHNNDNAIgJM0EZsfoJIQ1AMhcshGaFsnUer__fP-Yh2Btm0xd31ZJ0ybdyiYPW7fpzcq9hucmSu683lofkmK38-6t2equce0pOqr1Jtiz3zpGT1fzx9lNuri_vp0Vi9RQlnepzEthcy45LzNTS60lN7yqqlKTEgubUcE4rwzVlpQlkdhmleDMUM4xsNoAHaOLYW7c_dLb0Km1630bVyqSAadYUEmjajKolnpjVdPWrvPaxKjstjGutXUT-wUnWc6AQh4BMgDGuxC8rdXOx8_8XmFQ3-aqwVwVzVU_5ioeITpAIYrbpfV_t_xDfQFezH3M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406317393</pqid></control><display><type>article</type><title>A Berry–Esseen Bound in the Smoluchowski–Kramers Approximation</title><source>SpringerLink Journals</source><creator>Van Tan, Nguyen ; Dung, Nguyen Tien</creator><creatorcontrib>Van Tan, Nguyen ; Dung, Nguyen Tien</creatorcontrib><description>In this paper, we use the Kolmogorov distance to investigate the Smoluchowski–Kramers approximation for stochastic differential equations. We obtain an explicit Berry–Esseen error bound for the rate of convergence. Our main tools are the techniques of Malliavin calculus.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-020-02564-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Differential equations ; Mathematical analysis ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2020-05, Vol.179 (4), p.871-884</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-98b7e86966b4cf9aa96c6dddba2b17e437566dc3ae2bb291e4d765c366105fc03</citedby><cites>FETCH-LOGICAL-c358t-98b7e86966b4cf9aa96c6dddba2b17e437566dc3ae2bb291e4d765c366105fc03</cites><orcidid>0000-0001-8319-8056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-020-02564-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-020-02564-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Van Tan, Nguyen</creatorcontrib><creatorcontrib>Dung, Nguyen Tien</creatorcontrib><title>A Berry–Esseen Bound in the Smoluchowski–Kramers Approximation</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>In this paper, we use the Kolmogorov distance to investigate the Smoluchowski–Kramers approximation for stochastic differential equations. We obtain an explicit Berry–Esseen error bound for the rate of convergence. Our main tools are the techniques of Malliavin calculus.</description><subject>Approximation</subject><subject>Differential equations</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqVwAVaRWKeM7diOl2lVHqISC2BtOY7TprRxsRNBd9yBG3ISDEFih0ajkUb_N48foXMMEwwgLgMGyVgKBGIynqX8AI0wEySVHNNDNAIgJM0EZsfoJIQ1AMhcshGaFsnUer__fP-Yh2Btm0xd31ZJ0ybdyiYPW7fpzcq9hucmSu683lofkmK38-6t2equce0pOqr1Jtiz3zpGT1fzx9lNuri_vp0Vi9RQlnepzEthcy45LzNTS60lN7yqqlKTEgubUcE4rwzVlpQlkdhmleDMUM4xsNoAHaOLYW7c_dLb0Km1630bVyqSAadYUEmjajKolnpjVdPWrvPaxKjstjGutXUT-wUnWc6AQh4BMgDGuxC8rdXOx8_8XmFQ3-aqwVwVzVU_5ioeITpAIYrbpfV_t_xDfQFezH3M</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Van Tan, Nguyen</creator><creator>Dung, Nguyen Tien</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8319-8056</orcidid></search><sort><creationdate>20200501</creationdate><title>A Berry–Esseen Bound in the Smoluchowski–Kramers Approximation</title><author>Van Tan, Nguyen ; Dung, Nguyen Tien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-98b7e86966b4cf9aa96c6dddba2b17e437566dc3ae2bb291e4d765c366105fc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Differential equations</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Tan, Nguyen</creatorcontrib><creatorcontrib>Dung, Nguyen Tien</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Tan, Nguyen</au><au>Dung, Nguyen Tien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Berry–Esseen Bound in the Smoluchowski–Kramers Approximation</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>179</volume><issue>4</issue><spage>871</spage><epage>884</epage><pages>871-884</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>In this paper, we use the Kolmogorov distance to investigate the Smoluchowski–Kramers approximation for stochastic differential equations. We obtain an explicit Berry–Esseen error bound for the rate of convergence. Our main tools are the techniques of Malliavin calculus.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-020-02564-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8319-8056</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2020-05, Vol.179 (4), p.871-884
issn 0022-4715
1572-9613
language eng
recordid cdi_proquest_journals_2406317393
source SpringerLink Journals
subjects Approximation
Differential equations
Mathematical analysis
Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Theoretical
title A Berry–Esseen Bound in the Smoluchowski–Kramers Approximation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Berry%E2%80%93Esseen%20Bound%20in%20the%20Smoluchowski%E2%80%93Kramers%20Approximation&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Van%20Tan,%20Nguyen&rft.date=2020-05-01&rft.volume=179&rft.issue=4&rft.spage=871&rft.epage=884&rft.pages=871-884&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-020-02564-6&rft_dat=%3Cgale_proqu%3EA624850308%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406317393&rft_id=info:pmid/&rft_galeid=A624850308&rfr_iscdi=true