Zirconium–Metalloporphyrin Frameworks–Luminol Competitive Electrochemiluminescence for Ratiometric Detection of Polynucleotide Kinase Activity

We propose a novel competitive mechanism involving the dissolved oxygen (O2) between zirconium-based porphyrinic metal–organic framework nanoparticles (NMOFs) and luminol into a ratiometric electrochemiluminescence (ECL) biosensing interface. Zinc tetrakis­(carboxyphenyl)-porphyrin (ZnTCPP) in NMOFs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2020-05, Vol.92 (10), p.7354-7362
Hauptverfasser: Zhang, Guangyao, Chai, Huining, Tian, Mingwei, Zhu, Shifeng, Qu, Lijun, Zhang, Xueji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7362
container_issue 10
container_start_page 7354
container_title Analytical chemistry (Washington)
container_volume 92
creator Zhang, Guangyao
Chai, Huining
Tian, Mingwei
Zhu, Shifeng
Qu, Lijun
Zhang, Xueji
description We propose a novel competitive mechanism involving the dissolved oxygen (O2) between zirconium-based porphyrinic metal–organic framework nanoparticles (NMOFs) and luminol into a ratiometric electrochemiluminescence (ECL) biosensing interface. Zinc tetrakis­(carboxyphenyl)-porphyrin (ZnTCPP) in NMOFs as electron media reduce O2 into reactive oxygen species (ROS) and produce singlet oxygen (1O2), resulting in cathodic ECL. Meanwhile, ROS also react with the luminol anion radical and amplify the anodic ECL emission. Based on the competitive-mechanism-driven ECL process, taking the detection of polynucleotide kinase (PNK) as example, with assembling DNA-functionalized NMOFs on the sensing interface, a lower detection limit of 6.5 × 10–5 U mL–1 and broader linear relationship range from 0.0002 to 10 U mL–1 were obtained compared with that of single-signal-driven ECL sensors. This proposed MOFs-luminol competitive ECL mechanism involving dissolved O2 may provide a new pathway for further research of a green and highly sensitive ECL biosensing system.
doi_str_mv 10.1021/acs.analchem.0c01262
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2406309682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406309682</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-4cfb4652423e348cf7287f45d9d512e592012f6f3006154f6bc91139659f9d9d3</originalsourceid><addsrcrecordid>eNp9kU1u2zAUhIkiReP83KAoCHQt55GUaGkZuPlDHLQomk02Ak0_IkwpUSWpBN7lDOkNe5LSsJNlVlzMN_OIGUI-M5gy4OxE6ThVvXL6HrspaGBc8g9kwioOhaxrvkcmACAKPgPYJwcxPgAwBkx-IvuCC9bwmk3Iy50N2vd27P49_73BpJzzgw_D_TrYnp4H1eGTD79jVhdjZ3vv6Nx3Ayab7CPSM4c6Bb_5g3UbHaPGXiM1PtCfKlnfYQpW02-YMml9T72hP7xb96N26JNdIb22vYpIT7P-aNP6iHw0ykU83r2H5Pb87Nf8slh8v7iany4KJWYyFaU2y1JWvOQCRVlrM-P1zJTVqllVjGPV8FyJkUYASFaVRi51w5hoZNWYJkPikHzd5g7B_xkxpvbBjyE3GlteghTQyJpnqtxSOvgYA5p2CLZTYd0yaDdDtHmI9nWIdjdEtn3ZhY_LDldvptfmMwBbYGN_O_xu5n98qJ1N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406309682</pqid></control><display><type>article</type><title>Zirconium–Metalloporphyrin Frameworks–Luminol Competitive Electrochemiluminescence for Ratiometric Detection of Polynucleotide Kinase Activity</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Zhang, Guangyao ; Chai, Huining ; Tian, Mingwei ; Zhu, Shifeng ; Qu, Lijun ; Zhang, Xueji</creator><creatorcontrib>Zhang, Guangyao ; Chai, Huining ; Tian, Mingwei ; Zhu, Shifeng ; Qu, Lijun ; Zhang, Xueji</creatorcontrib><description>We propose a novel competitive mechanism involving the dissolved oxygen (O2) between zirconium-based porphyrinic metal–organic framework nanoparticles (NMOFs) and luminol into a ratiometric electrochemiluminescence (ECL) biosensing interface. Zinc tetrakis­(carboxyphenyl)-porphyrin (ZnTCPP) in NMOFs as electron media reduce O2 into reactive oxygen species (ROS) and produce singlet oxygen (1O2), resulting in cathodic ECL. Meanwhile, ROS also react with the luminol anion radical and amplify the anodic ECL emission. Based on the competitive-mechanism-driven ECL process, taking the detection of polynucleotide kinase (PNK) as example, with assembling DNA-functionalized NMOFs on the sensing interface, a lower detection limit of 6.5 × 10–5 U mL–1 and broader linear relationship range from 0.0002 to 10 U mL–1 were obtained compared with that of single-signal-driven ECL sensors. This proposed MOFs-luminol competitive ECL mechanism involving dissolved O2 may provide a new pathway for further research of a green and highly sensitive ECL biosensing system.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.0c01262</identifier><identifier>PMID: 32319281</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biosensing Techniques ; Biosensors ; Chemistry ; Competition ; Deoxyribonucleic acid ; Dissolved oxygen ; DNA ; Electrochemical Techniques ; Electrochemiluminescence ; Enzyme Inhibitors - pharmacology ; HeLa Cells ; Humans ; Kinases ; Luminescent Measurements ; Luminol ; Metal-organic frameworks ; Metal-Organic Frameworks - chemical synthesis ; Metal-Organic Frameworks - chemistry ; Metalloporphyrins ; Molecular Structure ; Nanoparticles ; Nanoparticles - chemistry ; Oxygen ; Particle Size ; Polynucleotide 5'-Hydroxyl-Kinase - analysis ; Polynucleotide 5'-Hydroxyl-Kinase - antagonists &amp; inhibitors ; Polynucleotide 5'-Hydroxyl-Kinase - metabolism ; Polynucleotide kinase ; Reactive oxygen species ; Singlet oxygen ; Surface Properties ; Zirconium</subject><ispartof>Analytical chemistry (Washington), 2020-05, Vol.92 (10), p.7354-7362</ispartof><rights>Copyright American Chemical Society May 19, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-4cfb4652423e348cf7287f45d9d512e592012f6f3006154f6bc91139659f9d9d3</citedby><cites>FETCH-LOGICAL-a376t-4cfb4652423e348cf7287f45d9d512e592012f6f3006154f6bc91139659f9d9d3</cites><orcidid>0000-0002-7159-5166 ; 0000-0002-0951-4222 ; 0000-0002-0041-126X ; 0000-0002-0035-3821 ; 0000-0002-7267-2952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.0c01262$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.0c01262$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32319281$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Guangyao</creatorcontrib><creatorcontrib>Chai, Huining</creatorcontrib><creatorcontrib>Tian, Mingwei</creatorcontrib><creatorcontrib>Zhu, Shifeng</creatorcontrib><creatorcontrib>Qu, Lijun</creatorcontrib><creatorcontrib>Zhang, Xueji</creatorcontrib><title>Zirconium–Metalloporphyrin Frameworks–Luminol Competitive Electrochemiluminescence for Ratiometric Detection of Polynucleotide Kinase Activity</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>We propose a novel competitive mechanism involving the dissolved oxygen (O2) between zirconium-based porphyrinic metal–organic framework nanoparticles (NMOFs) and luminol into a ratiometric electrochemiluminescence (ECL) biosensing interface. Zinc tetrakis­(carboxyphenyl)-porphyrin (ZnTCPP) in NMOFs as electron media reduce O2 into reactive oxygen species (ROS) and produce singlet oxygen (1O2), resulting in cathodic ECL. Meanwhile, ROS also react with the luminol anion radical and amplify the anodic ECL emission. Based on the competitive-mechanism-driven ECL process, taking the detection of polynucleotide kinase (PNK) as example, with assembling DNA-functionalized NMOFs on the sensing interface, a lower detection limit of 6.5 × 10–5 U mL–1 and broader linear relationship range from 0.0002 to 10 U mL–1 were obtained compared with that of single-signal-driven ECL sensors. This proposed MOFs-luminol competitive ECL mechanism involving dissolved O2 may provide a new pathway for further research of a green and highly sensitive ECL biosensing system.</description><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Chemistry</subject><subject>Competition</subject><subject>Deoxyribonucleic acid</subject><subject>Dissolved oxygen</subject><subject>DNA</subject><subject>Electrochemical Techniques</subject><subject>Electrochemiluminescence</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Kinases</subject><subject>Luminescent Measurements</subject><subject>Luminol</subject><subject>Metal-organic frameworks</subject><subject>Metal-Organic Frameworks - chemical synthesis</subject><subject>Metal-Organic Frameworks - chemistry</subject><subject>Metalloporphyrins</subject><subject>Molecular Structure</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Oxygen</subject><subject>Particle Size</subject><subject>Polynucleotide 5'-Hydroxyl-Kinase - analysis</subject><subject>Polynucleotide 5'-Hydroxyl-Kinase - antagonists &amp; inhibitors</subject><subject>Polynucleotide 5'-Hydroxyl-Kinase - metabolism</subject><subject>Polynucleotide kinase</subject><subject>Reactive oxygen species</subject><subject>Singlet oxygen</subject><subject>Surface Properties</subject><subject>Zirconium</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1u2zAUhIkiReP83KAoCHQt55GUaGkZuPlDHLQomk02Ak0_IkwpUSWpBN7lDOkNe5LSsJNlVlzMN_OIGUI-M5gy4OxE6ThVvXL6HrspaGBc8g9kwioOhaxrvkcmACAKPgPYJwcxPgAwBkx-IvuCC9bwmk3Iy50N2vd27P49_73BpJzzgw_D_TrYnp4H1eGTD79jVhdjZ3vv6Nx3Ayab7CPSM4c6Bb_5g3UbHaPGXiM1PtCfKlnfYQpW02-YMml9T72hP7xb96N26JNdIb22vYpIT7P-aNP6iHw0ykU83r2H5Pb87Nf8slh8v7iany4KJWYyFaU2y1JWvOQCRVlrM-P1zJTVqllVjGPV8FyJkUYASFaVRi51w5hoZNWYJkPikHzd5g7B_xkxpvbBjyE3GlteghTQyJpnqtxSOvgYA5p2CLZTYd0yaDdDtHmI9nWIdjdEtn3ZhY_LDldvptfmMwBbYGN_O_xu5n98qJ1N</recordid><startdate>20200519</startdate><enddate>20200519</enddate><creator>Zhang, Guangyao</creator><creator>Chai, Huining</creator><creator>Tian, Mingwei</creator><creator>Zhu, Shifeng</creator><creator>Qu, Lijun</creator><creator>Zhang, Xueji</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-7159-5166</orcidid><orcidid>https://orcid.org/0000-0002-0951-4222</orcidid><orcidid>https://orcid.org/0000-0002-0041-126X</orcidid><orcidid>https://orcid.org/0000-0002-0035-3821</orcidid><orcidid>https://orcid.org/0000-0002-7267-2952</orcidid></search><sort><creationdate>20200519</creationdate><title>Zirconium–Metalloporphyrin Frameworks–Luminol Competitive Electrochemiluminescence for Ratiometric Detection of Polynucleotide Kinase Activity</title><author>Zhang, Guangyao ; Chai, Huining ; Tian, Mingwei ; Zhu, Shifeng ; Qu, Lijun ; Zhang, Xueji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-4cfb4652423e348cf7287f45d9d512e592012f6f3006154f6bc91139659f9d9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Chemistry</topic><topic>Competition</topic><topic>Deoxyribonucleic acid</topic><topic>Dissolved oxygen</topic><topic>DNA</topic><topic>Electrochemical Techniques</topic><topic>Electrochemiluminescence</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Kinases</topic><topic>Luminescent Measurements</topic><topic>Luminol</topic><topic>Metal-organic frameworks</topic><topic>Metal-Organic Frameworks - chemical synthesis</topic><topic>Metal-Organic Frameworks - chemistry</topic><topic>Metalloporphyrins</topic><topic>Molecular Structure</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Oxygen</topic><topic>Particle Size</topic><topic>Polynucleotide 5'-Hydroxyl-Kinase - analysis</topic><topic>Polynucleotide 5'-Hydroxyl-Kinase - antagonists &amp; inhibitors</topic><topic>Polynucleotide 5'-Hydroxyl-Kinase - metabolism</topic><topic>Polynucleotide kinase</topic><topic>Reactive oxygen species</topic><topic>Singlet oxygen</topic><topic>Surface Properties</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guangyao</creatorcontrib><creatorcontrib>Chai, Huining</creatorcontrib><creatorcontrib>Tian, Mingwei</creatorcontrib><creatorcontrib>Zhu, Shifeng</creatorcontrib><creatorcontrib>Qu, Lijun</creatorcontrib><creatorcontrib>Zhang, Xueji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guangyao</au><au>Chai, Huining</au><au>Tian, Mingwei</au><au>Zhu, Shifeng</au><au>Qu, Lijun</au><au>Zhang, Xueji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zirconium–Metalloporphyrin Frameworks–Luminol Competitive Electrochemiluminescence for Ratiometric Detection of Polynucleotide Kinase Activity</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2020-05-19</date><risdate>2020</risdate><volume>92</volume><issue>10</issue><spage>7354</spage><epage>7362</epage><pages>7354-7362</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>We propose a novel competitive mechanism involving the dissolved oxygen (O2) between zirconium-based porphyrinic metal–organic framework nanoparticles (NMOFs) and luminol into a ratiometric electrochemiluminescence (ECL) biosensing interface. Zinc tetrakis­(carboxyphenyl)-porphyrin (ZnTCPP) in NMOFs as electron media reduce O2 into reactive oxygen species (ROS) and produce singlet oxygen (1O2), resulting in cathodic ECL. Meanwhile, ROS also react with the luminol anion radical and amplify the anodic ECL emission. Based on the competitive-mechanism-driven ECL process, taking the detection of polynucleotide kinase (PNK) as example, with assembling DNA-functionalized NMOFs on the sensing interface, a lower detection limit of 6.5 × 10–5 U mL–1 and broader linear relationship range from 0.0002 to 10 U mL–1 were obtained compared with that of single-signal-driven ECL sensors. This proposed MOFs-luminol competitive ECL mechanism involving dissolved O2 may provide a new pathway for further research of a green and highly sensitive ECL biosensing system.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32319281</pmid><doi>10.1021/acs.analchem.0c01262</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7159-5166</orcidid><orcidid>https://orcid.org/0000-0002-0951-4222</orcidid><orcidid>https://orcid.org/0000-0002-0041-126X</orcidid><orcidid>https://orcid.org/0000-0002-0035-3821</orcidid><orcidid>https://orcid.org/0000-0002-7267-2952</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2020-05, Vol.92 (10), p.7354-7362
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_journals_2406309682
source MEDLINE; American Chemical Society Journals
subjects Biosensing Techniques
Biosensors
Chemistry
Competition
Deoxyribonucleic acid
Dissolved oxygen
DNA
Electrochemical Techniques
Electrochemiluminescence
Enzyme Inhibitors - pharmacology
HeLa Cells
Humans
Kinases
Luminescent Measurements
Luminol
Metal-organic frameworks
Metal-Organic Frameworks - chemical synthesis
Metal-Organic Frameworks - chemistry
Metalloporphyrins
Molecular Structure
Nanoparticles
Nanoparticles - chemistry
Oxygen
Particle Size
Polynucleotide 5'-Hydroxyl-Kinase - analysis
Polynucleotide 5'-Hydroxyl-Kinase - antagonists & inhibitors
Polynucleotide 5'-Hydroxyl-Kinase - metabolism
Polynucleotide kinase
Reactive oxygen species
Singlet oxygen
Surface Properties
Zirconium
title Zirconium–Metalloporphyrin Frameworks–Luminol Competitive Electrochemiluminescence for Ratiometric Detection of Polynucleotide Kinase Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A42%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zirconium%E2%80%93Metalloporphyrin%20Frameworks%E2%80%93Luminol%20Competitive%20Electrochemiluminescence%20for%20Ratiometric%20Detection%20of%20Polynucleotide%20Kinase%20Activity&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Zhang,%20Guangyao&rft.date=2020-05-19&rft.volume=92&rft.issue=10&rft.spage=7354&rft.epage=7362&rft.pages=7354-7362&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.0c01262&rft_dat=%3Cproquest_cross%3E2406309682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406309682&rft_id=info:pmid/32319281&rfr_iscdi=true